[1]
Ito, S., et al., High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness. Advanced Materials, 2006. 18(9): pp.1202-1205.
DOI: 10.1002/adma.200502540
Google Scholar
[2]
Nazeeruddin, M.K., et al., Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. Journal of the American Chemical Society, 2005. 127(48): pp.16835-16847.
DOI: 10.1021/ja052467l
Google Scholar
[3]
Guo, W., et al., Effect of N Dopant Amount on the Performance of Dye-Sensitized Solar Cells Based on N-Doped TiO2 Electrodes. The Journal of Physical Chemistry C, (2011).
Google Scholar
[4]
Yum, J.H., et al., Effect of coadsorbent on the photovoltaic performance of zinc pthalocyamine-sensitized solar cells. Langmuir, 2008. 24(10): pp.5636-5640.
DOI: 10.1021/la800087q
Google Scholar
[5]
Hanmin, T., et al., An improved method to estimate the equivalent circuit parameters in DSSCs. Solar Energy, 2009. 83(5): pp.715-720.
DOI: 10.1016/j.solener.2008.10.019
Google Scholar
[6]
Hanmin, T. and et al., Influence of capacitance characteristic on dye-sensitized solar cell's IPCE measurement. Journal of Physics D: Applied Physics, 2009. 42(4): p.045109.
DOI: 10.1088/0022-3727/42/4/045109
Google Scholar
[7]
yang, l., Study on Characteristics for Dye-sensitized Solar Cells. master degree paper of Tianjin University, (2010).
Google Scholar
[8]
Johnson, D.H., Origins of the equivalent circuit concept: the current-source equivalent. Proceedings of the Ieee, 2003. 91(5): pp.817-821.
DOI: 10.1109/jproc.2003.811795
Google Scholar
[9]
Murayama, M. and T. Mori, Evaluation of treatment effects for high-performance dye-sensitized solar cells using equivalent circuit analysis. Thin Solid Films, 2006. 509(1-2): pp.123-126.
DOI: 10.1016/j.tsf.2005.09.145
Google Scholar