Effect of Rolling on Microstructure and Wear Behavior of Hot Rolled Al6061-Beryl Composites

Article Preview

Abstract:

The present paper deals with the study of microstructure and wear characteristics of hot rolled beryl reinforced aluminium metal matrix composites (AMMCs). Al6061-beryl composites with 2, 6 and 10% of beryl were made using stir casting technique. The optical microstructure reveals the homogeneous dispersion of beryl particles in the matrix. The worn surfaces have been observed under SEM to understand the mechanism of wear. Hot rolled composites at 4500C possess higher hardness and lower specific wear rates under all loads and sliding distance studied in this investigation, when compared with cast composites.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 463-464)

Pages:

444-448

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.G. Satyanarayana, R.M. Pillai, B.C. Pai, M. Kestursatya, P.K. Rohatgi, J.K. Kim, Development in cast metal matrix composites over the last three and a half decades, in: Proceedings of the Third International Conference, Advances in Composite Materials, Bangalore, (2000).

Google Scholar

[2] C.S. Ramesh, A.R. Anwar Khan, N. Ravikumar, P. Savanprabhu, Prediction of wear coefficient of Al6061-TiO2 composites, Wear 259 (2005) 602–608.

DOI: 10.1016/j.wear.2005.02.115

Google Scholar

[3] K.R. Ravi, V.M. Sreekumar, R.M. Pillai, Chandan Mahato, K.R. Amaranathan, R. Arul Kumar, Optimization of mixing parameters through a water model for metal matrix composites synthesis. Mater Des 28 (2007) 871–81.

DOI: 10.1016/j.matdes.2005.10.007

Google Scholar

[4] K. M Shorowordi, T. Laoui, Haseeb ASMA, J.P. Celis, L. Froyen, Microstructure and interface characteristics of B4C, SiC, and Al2O3 reinforced Al matrix composites: a comparative study. J Mater Process Technol 142 (2003) 738–43.

DOI: 10.1016/s0924-0136(03)00815-x

Google Scholar

[5] I. Kerti, F. Toptan, Microstructural variations in cast B4C-reinforced aluminium matrix composites (AMCs). Mater Lett 62 (2008) 1215–8.

DOI: 10.1016/j.matlet.2007.08.015

Google Scholar

[6] G. Durrant, V.D. Scott, The effect of forging on properties and microstructure saffil fibre reinforced aluminum. Comp. Sci. Technol. 49 (1993) 153–164.

DOI: 10.1016/0266-3538(93)90055-l

Google Scholar

[7] I. Ozdemir, U. Cocen, K. Onel, The effect of forging on the properties of particulate reinforced aluminium alloy composites. Comp. Sci. Technol. 60 (2000) 411–419.

Google Scholar

[8] Harrigan Jr., W.C., Gaebler, G., Davis, E., Levin, E.J., In: Hack, J.E., Amateau, M.F. (Eds. ), Mechanical behavior of MMCs. Metallurgical Society, Warren dale PA(1983) 169.

Google Scholar

[9] N.A. Deer, Howie, Zussman, Rock Forming Minerals, Vol. I, Longman, New York, p.258.

Google Scholar

[10] H.N. Reddappa, K.R. Suresh, H.B. Niranjan and K.G. Satyanarayana, Effect of Quenching Media and Ageing Time on Al6061-Beryl Composites, Applied Mechanics and Materials Vols. 110-116 (2012) 1374-1379.

DOI: 10.4028/www.scientific.net/amm.110-116.1374

Google Scholar

[11] S. Balasivanandha Prabu, L. Karunamoorthy, S. Kathiresan, B. Mohan, Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite, Journal of Materials Processing Technology 171 (2006) 268–273.

DOI: 10.1016/j.jmatprotec.2005.06.071

Google Scholar

[12] ASTM International designation ASTM E10-10 Standard Test Method for Brinell Hardness of Metallic Materials.

Google Scholar

[13] ASTM standard test method for wear testing with a pin-on-disc apparatus. ASTM G99-95. Philadelphia, PA (1995).

Google Scholar

[14] B. Inem, Dynamic recrystallisation in a thermo mechanical processed metal matrix composite, Mater. Sci. Eng. A197 (1995) 91–94.

Google Scholar

[15] S. K. Shaha, A. S. W. Kurny, M. Hasan and S. Dyuti, Al-4. 5 Cu-3. 8 Fe In-Situ Composites: Effect of Rolling on Microstructure and Wear Properties, Advanced Materials Research Vols. 264-265 (2011) p.1939-(1943).

DOI: 10.4028/www.scientific.net/amr.264-265.1939

Google Scholar