Germanium Adsorption on SrTiO3 (001) 2×1 Surface: A Density Functional Theory Study

Article Preview

Abstract:

Integrating germanium on Si is one of the major challenges of epitaxial growth and presents important applicative interest. Recently, SrTiO3 was adopted as a buffer layer to accommodate the mismatch between Ge and Si. Germanium can take its bulk lattice parameter as soon as the growth begins without threading defects on SrTiO3 surface. However, the details of Ge adsorption on SrTiO3 surface are not clear. In present work, the electronic structures of Ge deposited on the SrTiO3 (001) 2×1 Double Layer (DL) TiO2 surfaces were investigated by means of density functional theory calculations. Several stable adsorption sites are identified. It is found that the germanium adsorption shows site selectivity and causes noticeable surface distortion. The charge transfer from germanium atom to surface contributes to the formation of strong Ge-O bondings and surface metallization.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 463-464)

Pages:

484-488

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Aggarwal, S. R. Perusse, C. W. Tipton, R. Ramesh, H. D. Drew, T. Venkatesan, D. B. Romero, V. B. Podobedov, and A. Weber: Appl. Phys. Lett. 73, (1998), p. (1973).

DOI: 10.1063/1.122339

Google Scholar

[2] J. H. Ahn, P. C. McIntyre, L. W. Mirkarimi, S. R. Gilbert, J. Amano, and M. Schulberg: Appl. Phys. Lett. 77, (2000), p.1378.

DOI: 10.1063/1.1290139

Google Scholar

[3] W. Wei, Y. Dai, M. Guo, Y. Zhu, B. Huang: J. Phys. Chem. C 114, (2010), p.10917.

Google Scholar

[4] W. Wei, Y. Dai, M. Guo, C. Niu, B. Huang: Surf. Sci. 605, (2011), p.1331.

Google Scholar

[5] W. Wei, Y. Dai, K. Lai, M. Guo, B. Huang: Chem. Phys. Lett. 510, (2011), p.104.

Google Scholar

[6] W. Wei, Y. Dai, M. Guo, B. Huang: Appl. Surf. Sci. 257, (2011), p.6607.

Google Scholar

[7] S. Piskunov, E. Heifets, R. I. Eglitis, G. Borstel: Comput. Mater. Sci. 29, (2004), p.165.

Google Scholar

[8] G. Delhaye, C. Merckling, M. El-Kazzi, G. Saint-Girons, M. Gendry, Y. Robach, G. Hollinger, L. Largeau, G. Patriarche: J. Appl. Phys. 100, (2006), p.124109.

DOI: 10.1063/1.2407273

Google Scholar

[9] J. Cheng, T. Aviles, A. El Akra, C. Bru-Chevallier, L. Largeau, G. Patriarche, P. Regreny, A. Benamrouche, Y. Robach, G. Hollinger, G. Saint-Girons: Appl. Phys. Lett. 95, (2009), p.232116.

DOI: 10.1063/1.3273850

Google Scholar

[10] G. Saint-Girons, J. Cheng, P. Regreny, L. Largeau, G. Patriarche, and G. Hollinger: Phys. Rev. B 80, (2009), p.155308.

DOI: 10.1103/physrevb.80.155308

Google Scholar

[11] J. Wang, I. Lefebvre: J. Phys. Chem. C, accepted, DOI: 10. 1021/jp205074w.

Google Scholar

[12] G. Kresse and J. Hafner: Phys. Rev. B 47, (1993), p.558.

Google Scholar

[13] P. E. Blöchl: Phys. Rev. B 50, (1994), p.17953.

Google Scholar

[14] G. Kresse and D. Joubert: Phys. Rev. B 59, (1999), p.1758.

Google Scholar

[15] J. P. Perdew, K. Burke, M. Ernzerhof: Phys. Rev. Lett. 77, (1996), p.3865.

Google Scholar

[16] A. C. Wright, G. Etherington, J. A. E. Desa, R. N. Sinclair, G. A. N. Connell, J. C. Mikkelsen: J. Non-Cryst. Solids 49, (1982), p.63.

DOI: 10.1016/0022-3093(82)90109-0

Google Scholar