Influence of Liquid Structure Change on Microstructure and Properties of SnZnBi Solder Alloy

Article Preview

Abstract:

Currently, Pb-free is the primary trend of development for solder alloys, and the existing Pb-free solder alloys are still difficult to replace the traditional tin-lead solder alloys. How to further improve the welding properties of Pb-free solder alloys is the issue we currently faced. In this paper, through melt overheating treatment, the influence of liquid-liquid structure change (LLSC) on the structure and properties of SnZn8Bi3 Pb-free solder alloy has been studied. Experimental results show that the LLSC has obvious effects on the solidification process and solidified microstructure of SnZn8Bi3 alloy: bigger solidification undercooling degree in the solidification process, finer and more dispersed solidification structure, and more importantly, the mechanical and welding properties of the solder alloy have also been obviously improved.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 463-464)

Pages:

489-493

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.Q. Zu, Z.G. Zhu, L.J. Guo, et al.: Physical Review B, vol. 64, No. 18 (2001), pp.1-4.

Google Scholar

[2] F.Q. Zu, X.F. Li, L.J. Guo, et al.: Physics Letters A, vol. 324 (2004), pp.472-478.

Google Scholar

[3] Q. Li, F.Q. Zu, X.F. Li, et al.: Modern Physics Letters B, vol. 20, No. 4 (2006), pp.151-158.

Google Scholar

[4] X.F. Li, F.Q. Zu, L.J. Liu, et al.: Physics and Chemistry of liquids, vol. 45, No. 5 (2007), pp.531-539.

Google Scholar

[5] F.Q. Zu, Z.G. Zhu, et al.: Physical Review Letters, vol. 89, No. 12 (2002), pp.1-3.

Google Scholar

[6] Dahlborg U, Calvo-Dahlborg M, et al.: Eur. Phys. J. B, Vol. 14 (2000), pp.639-648.

Google Scholar

[7] X.F. Bian and W.M. Wang: Mater. Lett., Vol. 44 (2000), pp.54-58.

Google Scholar

[8] F.Q. Zu, Z.Y. Huang, Z.Z. Wang, et al.: Materials Science in Semiconductor Processing, Vol. 13 (2010), p.86–91.

Google Scholar

[9] F.Q. Zu, J. Chen et al.: J. Mater. Res., Vol. 24, No. 7 (2009), pp.2378-2384.

Google Scholar

[10] H.S. Chen, F.Q. Zu et al.: SCIENCE IN CHINA (E), Vol. 51, No. 9 (2008), pp.1402-1408.

Google Scholar

[11] X.F. Li, F. Zhang, F.Q. Zu, et al.: Journal of Alloys and Compounds, Vol. 505 (2010), p.472–475.

Google Scholar

[12] X.F. Li, F.Q. Zu, L.J. Liu, et al.: Journal of Alloys and Compounds, Vol. 453, No. 1-2 (2008), p.508.

Google Scholar

[13] H. Richter, G. Breitling: Z. Metallkd., Vol. 61(1970), p.628.

Google Scholar

[14] A.C. Mitus, A.Z. Patashinkii, B.I. Shumilo: Phys. Lett., Vol. 41 (1985), p. A113.

Google Scholar

[15] V. Manov, P. Popel, et al.: Materials Science and Engineering A, Vol. 304–306 (2001), p.54–60.

Google Scholar

[16] A.B. Bhatia W.H. Hargrove: Physical Review B, Vol. 10 (1974), pp.3186-3196.

Google Scholar

[17] P.S. Popel, O.A. Chikova, V.M. Matveev: High Temp. Mater. Proc., Vol. 4, No. 4 (1995), p.219.

Google Scholar

[18] Hu H Q: The Principle of Metal Solidification. (China Machine Press, Beijing 2000).

Google Scholar