Preparation and Photoluminescence Properties of ZnO-Covered Carbon Fibers

Article Preview

Abstract:

This paper reports that ZnO nanosheet-covered carbon fibers are synthesized by thermal oxidation of zinc films deposited on carbon fiber surfaces. The structure and optical properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) spectrum. The result shows that all of the cabon fibers are coated ZnO nanosheets. An orange-red emission around 683 nm was found in PL spectrum when the sample prepared at 400 oC for 4 hours in air. I considered that the growth of ZnO nanosheets may be related to the size of substrates and reaction temperature. The orange-red emission was resulted from the interstitial carbon of ZnO-nanosheet-covered fibers, and green emission results from the oxygen vacancies.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 463-464)

Pages:

510-514

Citation:

Online since:

February 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Oregan and M. Gratzel: Nature Vol. 353 (1991), p.737.

Google Scholar

[2] J. Suehire, N. Nakagawa, S.I. Hiaka, M. Ueda, K. Imasaka, M. Higashihata, T. Okada and M. Hara: nanotechnology Vol. 17 (2006), pp.2567-2573.

DOI: 10.1088/0957-4484/17/10/021

Google Scholar

[3] K.H. Woong, J.K. Bong, W.K. Tae, J. Gunho, S. Sunghoon, S.K. Soon, Y. Ahnsook, A.S. Eric and L. Takhee: Colloid. Surface. A Vol. 313-314 (2008), pp.378-382.

Google Scholar

[4] D. Bera, L. Qian, S. Sabui, S. Santra and P.H. Holloway: Optical mater. Vol. 30 (2008), pp.1233-1239.

DOI: 10.1016/j.optmat.2007.06.001

Google Scholar

[5] Y.R. Yang, X.H. Yan, Y. Xiao and Z.H. Guo: Chem. Phys. Lett. Vol. 446 (2007), pp.98-102.

Google Scholar

[6] X.D. Wang, Y. Ding, C.J. Summer and Z.L. Wang: J Phys. Chem. B Vol. 108 (2004), p.8773.

Google Scholar

[7] C. Klingshirn: Phys. Status solidi B Vol. 71 (1975), p.547.

Google Scholar

[8] X. Wang, Q.W. Li, Z.B. Liu, J. Zhang, Z.F. Liu and R.M. Wang: Appl. Phys. Lett. Vol. 84 (2004), p.4941.

Google Scholar

[9] D.J. Lee, J.Y. Park, Y.S. Yun, Y.S. Hong, J.H. Moon, B.T. Lee and S.S. Kim: J. Cryst. Growth Vol. 276 (2005), p.458.

Google Scholar

[10] Y. Tak and K.J. Yong: J. Phys. Chem. B Vol. 109 (2005), p.19263.

Google Scholar

[11] A. Y. L. Sim, G. K. L. Goh, S. Tripathy, D. Andeen and F. F. Lange: Electrochimica Acta Vol. 52 (2007) 2933.

DOI: 10.1016/j.electacta.2006.08.049

Google Scholar

[12] H. L. Zhou, A. Chen, L. K. Jian, K. F. Ooi, G. K. L. Goh, K. Y. Zang and S. J. Chua: J. Crystal Growth Vol. 310 (2008), p.3626.

Google Scholar

[13] S. He, H. Maeda, M. Uehara and M. Miyazaki: Mater. Lett. Vol. 61 (2007), p.626.

Google Scholar

[14] W. Lili, W. Youshi, S. Yuanchang and W. Huiying: Rare Metals Vol. 25 (2006), p.68.

Google Scholar

[15] X. Wang, J. Song and Z.L. Wang: Mater. Phys. Lett. Vol. 424 (2006), p.86.

Google Scholar

[16] X. Xing, K. Zheng, H. Xu, F. Fang, H. Shen, J. Zhang, J. Zhu, C. Ye, G. Cao, D. Sun and G. Chen: Micron Vol. 37 (2006), p.370.

DOI: 10.1016/j.micron.2005.10.010

Google Scholar

[17] Y. Qin, X.D. Wang and Z.L. Wang, Nature Vol. 451 (2008), pp.809-914.

Google Scholar

[18] A. Umar and Y.B. Hahn: Nanotechnology Vol. 17 (2006), pp.2174-2180.

Google Scholar

[19] S.J. Chen, Y.C. Liu, Y.M. Lu, J.Y. Zhang, D.Z. Shen and X.W. Fan: J. Crystal Growth Vol. 289 (2006), pp.55-58.

Google Scholar

[20] D. Li, Y.H. Leung, A.B. Djurisic, Z.T. Liu, M.H. Xie, S.L. Shi, S.J. Xu and W.K. Chan: Appl. Phys. Lett. Vol. 85 (2004), p.1601.

Google Scholar

[21] L. Grigorjeva, D. Millers, K. Smits, J. Grabis, J. Fidelus, W. Łojkowski, T. Chudoba and K. Bienkowski: Radiat. Meas. Vol. 45, (2010), pp.441-443.

DOI: 10.1016/j.radmeas.2010.03.012

Google Scholar

[22] X.L. Wu, G.G. Siu, C.L. Fu and H.C. Ong: Appl. Phys. LEtt. Vol. 78 (2001), p.2285.

Google Scholar

[23] K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt and B.E. Gnade: J. Appl. Phys. Vol. 79 (1996), p.7983.

Google Scholar

[24] J.G. Zhou, F.Y. Zhao, Y.L. Wang, Y. Zhang and L. Yang: J. Lumin. Vol. 122-123 (2007), pp.195-197.

Google Scholar

[25] X. Liu, X. Wu, H. Cao and R.H. Chang: J. Appl. Phys. Vol. 95 (2004), p.3141.

Google Scholar

[26] Q.X. Zhao, P. Klason, M. Willander, H.M. Zhong, W. Lu and J.H. Yang: Appl. Phys. Lett. Vol. 87 (2005), p.211912.

Google Scholar

[27] J. Zeng, S. Wang, P. Tao and J. Xu: J. Alloy. Compd. Vol. 476 (2009) 60-63.

Google Scholar

[28] A.B. Djurisic, Y.H. Leung, K.H. Tam, L. Ding, W.K. Ge, H.Y. Chen and S. Gwo: Appl. Phys. Lett. Vol. 88 (2006), p.103107.

Google Scholar

[29] S. Chawla, N. Karar and H. Chander: Physic. B Vol. 405 (2010), pp.198-203.

Google Scholar

[30] B. Charnhattakorn, T. Charinpanitkul, A. Sirisuk and V. Pavarajarn: Ceram. Int. Vol. 37 (2011), p.2021-(2024).

Google Scholar