Synthesis and Characterization of Polystyrene-Graphite Nanocomposites via Surface Raft-Mediated Polymerization

Article Preview

Abstract:

The synthesis of polystyrene/GO (PS-GO) nanocomposites using the reversible addition-fragmentation chain transfer (RAFT) mediated polymerization method is described. The GO was synthesized and immobilized with a RAFT agent to afford RAFT-functionalized GO nanosheets. The RAFT-immobilized GO was used for the synthesis of PS nanocomposites in a controlled manner using miniemulsion polymerization. The moelcular weight and dispersity of the PS in the nanocomposites depended on the amount of RAFT-grafted GO in the system, in accordance with the features of the RAFT-mediated polymerization. X-ray diffraction and transmission electron microscopy analyses revealed that the nanocomposites had exfoliated morphology, even at relatively high GO content. The thermal stability and mechanical properties of the PS-GO nanocomposites were better than those of the neat PS polymer. Furthermore, the mechanical properties of the nanocomposites were dependent on the RAFT grafted GO content.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 463-464)

Pages:

527-532

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Liu, J.; Yang, W.; Tao, L.; Li, D.; Boyer, C.; Davis, T. P. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48 (2), 425-433.

Google Scholar

[2] Fim, F. d. C.; Guterres, J. M.; Basso, N. R. S.; Galland, G. B. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48 (3), 692-698.

Google Scholar

[3] Kim, H.; Abdala, A. A.; Macosko, C. W. Macromolecules 2010, 43 (16), 6515-6530.

Google Scholar

[4] Hummers, W. S.; Offeman, R. E. Journal of the American Chemical Society 1958, 80, 1339.

Google Scholar

[5] Sorokina, N. E.; Khaskov, M. A.; Avdeev, V. V.; Nikol'skaya, I. V. Russian Journal of General Chemistry 2005, 75 (2), 162-168.

Google Scholar

[6] Lai, J. T.; Filla, D.; Shea, R. Macromolecules 2002, 35 (18), 6754-6756.

Google Scholar

[7] Titelman, G. I.; Gelman, V.; Bron, S.; Khalfin, R. L.; Cohen, Y.; Bianco-Peled, H. Carbon 2005, 43 (3), 641-649.

DOI: 10.1016/j.carbon.2004.10.035

Google Scholar

[8] Uhl, F. M.; Wilkie, C. A. Polymer Degradation and Stability 2004, 84 (2), 215-226.

Google Scholar

[9] Mai, Y. -W.; Yu, Z. -Z., Polymer Nanocomposites. 2nd edition; Woodhead Publishing: Cambridge, 2006; Vol. 19, pp.510-533.

Google Scholar

[10] Chung, D. Journal of Materials Science 1987, 22 (12), 4190-4198.

Google Scholar

[11] Lowe, A. B.; McCormick, C. L. Progress in Polymer Science 2007, 32 (3), 283-351.

Google Scholar

[12] Postma, A.; Davis, T. P.; Li, G.; Moad, G.; O'Shea, M. S. Macromolecules 2006, 39 (16), 5307-5318.

Google Scholar