Synthesis of Novel Core-Shell Structured Hydroxyapatite/Meso-Silica for Removal of Methylene Blue from Aqueous Solutions

Article Preview

Abstract:

Core-shell structured hydroxyapatite (HA)/meso-silica was prepared and used as absorbance of methylene blue (MB). HA/meso-silica was synthesized in three steps: preparation of nano-sized HA by wet precipitation method, coating of dense silica and deposition of meso-silica shell on HA. As-received samples were characterized by Fourier transformed infare spectra, small angle X-ray diffraction, nitrogen adsorption-desorption isotherm and transmission electron microscopy. A wormhole framework mesostructure was found for HA/meso-silica. The specific surface area and pore volume were 128 m2•g-1 and 0.36 cm3•g-1, respectively. From the adsorption isotherm, HA/meso-silica with the great specific surface area exhibited a prominent adsorption capacity of MB (134.0 mg/g) in comparison with bare HA (0 mg/g). This study might shed light on surface modification of conventional low-cost adsorbents for removal of organic pollutants from aqueous solutions.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 463-464)

Pages:

543-547

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Eftekhari, A. Habibi-Yangjeh and Sh. Sohrabnezhad: J. Hazard. Mater. Vol. 178 (2010), p.3495.

Google Scholar

[2] P.C. Vandevivere, R. Bianchi, W.J. Verstraete: Chem. Technol. Biotechnol. Vol. 72 (1998), p.289.

Google Scholar

[3] M.A. Mohamad and A.E.N. Ahmed: J. Phys. Chem. C Vol. 114 (2010), p.14377.

Google Scholar

[4] J.T. Li, B.L. Li, H.C. Wang, X.B. Bian and X.M. Wang: Carbon Vol. 49 (2011), p.1912.

Google Scholar

[5] A. Derylo-Marczewska, A.W. Marczewski, S. Winter and D. Sternik: Appl. Surf. Sci. Vol. 256 (2010), p.5164.

Google Scholar

[6] M. Anbia and S.A. Hariri: Desalination Vol. 261 (2010), p.61.

Google Scholar

[7] Juan. Matos, A. García and S.E. Park: Appl. Catal. A Vol. 393 (2011), p.359.

Google Scholar

[8] K.S. Chou and C.C. Chen: Microp. Mesop. Mater. Vol. 98 (2007), p.208.

Google Scholar

[9] K. Mori, S. Kanai, T. Hara, T. Mizugaki, K. Ebitani, K. Jitsukawa and K. Kaneda: Chem. Mater. Vol. 19 (2007), p.1249.

Google Scholar

[10] T.T. Morgan, H.S. Muddana, E. i. Altinogˇlu, S.M. Rouse, A. Tabakovic´, T. Tabouillot, T.J. Russin, S.S. Shanmugavelandy, P.J. Butler, P.C. Eklund, J.K. Yun, M. Kester and J. H. Adair: Nano Lett. Vol. 8, (2008), p.4108.

DOI: 10.1021/nl8019888

Google Scholar

[11] K. Aslan, M. Wu, J.R. Lakowicz and C.D. Geddes, J. Am. Chem. Soc. Vol. 129 (2007), p.1524.

Google Scholar

[12] B. Palazzo, M. Iafisco, M. Laforgia, N. Margiotta, G. Natile and C.L. Bianchi: Adv. Funct. Mater. Vol. 17 (2007), p.2180.

DOI: 10.1002/adfm.200600361

Google Scholar

[13] C.F. Li and F.T. Meng: Mater. Lett. Vol. 62 (2008), p.932.

Google Scholar

[14] C.F. Li, G.C. Li, S.G. Liu, J.H. Bai and A.J. Zhang: Colloids Surf. A Vol. 366 (2010), P27.

Google Scholar

[15] Y. Deng, D. Qi, C. Deng, X. Zhang and D. Zhao, J. Am. Chem. Soc. Vol. 130 (2008), p.28.

Google Scholar

[16] H. Liu, G. Lu, Y. Guo, Y. Wang and Y. Guo: J. Colloid Interface Sci. Vol. 346 (2010), p.486.

Google Scholar

[17] Y.D. Xu, Y.X. Qi, G.X. Lu and S.B. Li: Catal. Lett. Vol. 125 (2008), p.83.

Google Scholar

[18] Y. Zhu, Y. Fang and S. Kaskel: J. Phys. Chem. C Vol. 114 (2010), p.16382.

Google Scholar

[19] I. Park and T.J. Pinnavaia: Microp. Mesop. Mater. Vol. 118 (2009), p.239.

Google Scholar

[20] S.H. Chen, P. Dong, G.H. Yang and J.J. Yang: J. Colloid Interface Sci. Vol. 180 (1996), p.237.

Google Scholar

[21] J.H. Potgieter: J. Chem. Ed. Vol. 68 (1991), p.349.

Google Scholar

[22] K.Y. Ho, G. McKay and K.L. Yeung: Langmuir Vol. 19 (2003), p.3019.

Google Scholar

[23] X. Fu, X. Chen, J. Wang and J. Liu: Microp. Mesop. Mater. Vol. 139 (2011), p.8.

Google Scholar