Synthesis of Fullerene-Acid Conjugates

Article Preview

Abstract:

N-substituted 3,4-fullero pyrrolidine was synthesized according to 1,3-Dipolar cycloaddition of the azomethine ylide. Aspartic acid and glutamic acid with protected α-amino and α-carboxyl groups were reacted with the activated hydroxyl group of N-substituted 3,4-fullero pyrrolidine, respectively. The products were deprotected, affording two novel fullerene α-amino acids, fullerene aspartic acid and fullerene glutamic acid. Their chemical structures were characterized by MALAI-TOF-MS, UV-Vis, FT-IR and 1HNMR. Both fullerene amino acids with a free amino group and a free carboxyl group would have unique property and potential use in medicine and biology. A novel method has been developed to synthesize fullerene conjugate. Their unique chemical structures make them very interesting for their potential use in medicine and biology.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 463-464)

Pages:

538-542

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.V. Prylutska, I.I. Grynyuk, K.O. Palyvoda, O.P. Matyshevska . Exp Oncol 32, 1, 29-32. (2010).

Google Scholar

[2] Enes R F, Tome A C, Cavaleiro J A S, El-Agamey A and McGarvey D J., Tetrahedron, 61: 11873-11881. (2005).

DOI: 10.1016/j.tet.2005.09.078

Google Scholar

[3] J.A. Brant, J. Labille, C.O. Robichaud and M. Wiesner, J Colloid Interface Sci, 314, 281–288. (2007).

DOI: 10.1016/j.jcis.2007.05.020

Google Scholar

[4] Markovic Z and Trajkovic V, Biomaterials, 29, 3561-3573 (2008).

Google Scholar

[5] Pickering K.D. and Wiesner M.R., Environ. Sci. Technol., 39, 1359-1365. (2005).

Google Scholar

[6] S.H. Friedman, P.S. Ganapathi, Y. Rubin, G. L. Kenyon, J. Med. Chem., 41(13), 2424-2429. (1998).

Google Scholar

[7] R. Sijbesma., G. Srdanov., F. Wudl. J. Am. Chem. Soc., 115, 6510-6512. (1993).

Google Scholar

[8] E. Nakamura, H. Tokuyama, S. Yamago, T. Shiraki, Y. Sugiura, Bull. Chem. Soc. Jpn., 69, 2143-2151. (1996).

Google Scholar

[9] Y.Z. An, C.H.B. Chen, J.L. Anderson, Tetrahedron., 52, 5179-5189. (1996).

Google Scholar

[10] Prat F, Hou C-C, Foote C S,. J Am Chem Soc, 1997, 119: 5051-5052.

Google Scholar

[11] H. Tokuyama, S. Yamago, E. Nakamura, T. Shiraki, and Y. Sugiura, J. Am. Chem. Soc., 115, 7918-7919. (1993).

DOI: 10.1021/ja00070a064

Google Scholar

[12] L.L. Dugan, D.M. Turetsky, C. Du, D. Lobner, M. Wheeler, C.R. Almli, C.K. Shen, T.Y. Luh, D.W. Choi, T.S. Lin, Proc. Natl. Acad. Sci., 94, 9434-9439. (1997).

DOI: 10.1073/pnas.94.17.9434

Google Scholar

[13] P. Mroz, G.P. Tegos, H. Gali, T. Wharton, T. Sarna and M.R. Hamblin, Photochem Photobiol Sci, 6 , 1139–1149, (2007).

DOI: 10.1039/b711141j

Google Scholar

[14] S.B. Brown, E.A. Brown and I. Walker, Lancet Oncol, 5, 497–508 (2004).

Google Scholar

[15] M.G. Alvarez, C. Prucca, M.E. Milanesio, E.N. Durantini and V. Rivarola, Int J Biochem Cell Biol, 38, 2092–2101 (2006).

Google Scholar

[16] P. Mroz, A. Pawlak, M. Satti, H. Lee, T. Wharton and H. Gali, et al. Free Radic Biol Med, 43, 711–719. (2007).

Google Scholar

[17] D. Pantarottoab, N. Tagmatarchisa,A. Biancob, and M. Prato, Mini-Reviews Med Chem., 4, 805-814. ( 2004).

Google Scholar

[18] Hu Z., Guan WC., Wang W., Cell Biology International, 31, 798-804. ( 2007).

Google Scholar

[19] K.K. Chin, S.C. Chuang, B. Hernandez, L.M. Campos, M. Selke and C.S. Foote, et al. Photochem Photobiol Sci, 7, 49–55 (2008).

Google Scholar

[20] Tierney E,. Dermatol. Surg., 35, 5, 725-728 (2009).

Google Scholar

[21] Yang J., Alemany L B., Driver J., Chem. Eur. J, 13, 2530–2545. ( 2007).

Google Scholar

[22] Sofou, P., Elemes, Y., Panou-Pomonis, E., Tetrahedron, 60, 2823-2828. ( 2004).

DOI: 10.1016/j.tet.2004.01.064

Google Scholar

[23] Nyst HJ, Tan IB, Stewart FA, Balm AJ., Photodiagnosis Photodyn. Ther., 6, 3-11. (2009).

Google Scholar

[24] Carolina C., Monica N., Rodica-Mariana Ion, Mihaela Gherghiceanu, Crina S., Nanomedicine, 5, 307-311. (2010).

Google Scholar

[25] Ortiz-Policarpio B, Lui H. , Skin Therapy Lett., 14, 1-3. (2009).

Google Scholar

[26] R Maeda-Mamiya, E Noirib, H Isobec, W Nakanishic, K Okamotob, K Doib, T Sugayad, T Izumie, T Hommaa, and E Nakamuraa, PNAS, 107, 5339-5344. (2010).

Google Scholar

[27] Zhang J, Wang YX, Kang F, Yang XL,. Chinese Chemical Letters, 19, 1159-1161. (2008).

Google Scholar

[28] Baker GL, Gupta A, Clark M L., Valenzuela B R., Staska L M., Harbo S J., Pierce J T. and Dill J A., Toxicol Sci., 101, 122–131. (2008).

DOI: 10.1093/toxsci/kfm243

Google Scholar

[29] Maeda R, Noiri E, Isobe H, Homma T, Tanaka T, Negishi K, Doi K, Fujita T, Nakamura E. , Hypertens Res, 31, 141–151. (2008).

DOI: 10.1291/hypres.31.141

Google Scholar

[30] Dokka S, Toledo D, Shi X, Castranova V, and Rojanasakul Y, Pharm Res, 17, 521–525. (2000).

DOI: 10.1023/a:1007504613351

Google Scholar

[31] Pellarini F, Pantarotto D, Da Ros T, Giangaspero A, Tossi A, Prato M Org. Lett., 3, 1845-1848. (2001).

DOI: 10.1021/ol015934m

Google Scholar

[32] Hu Z., Guan WC., Wang W., Chemico-Biological Interactions, 167, 135-144. (2007).

Google Scholar

[33] Pantarotto D., Bianco A., Pellarini F., Tossi A., Giangaspero A., Zelezetsky I., Briand J.P., Prato M., J. Am. Chem. Soc., 124, 12543–12549. (2002).

DOI: 10.1021/ja027603q

Google Scholar

[34] Liu J and Tabata Y, J Drug Target, 18, 602-610. (2010).

Google Scholar

[35] O.P. Edupuganti,Y. Singh, E. Defrancq, P. Dumy, Chem. Eur.J. 10, 5988. (2004).

Google Scholar