Synthesis of FeC2O4-Graphene Composites and their Application in Removal Dyes

Article Preview

Abstract:

A well-organized composite of graphene nanosheets decorated with FeC2O4 particles was synthesized through a simple chemical precipitation method. The FeC2O4 nanoparticles obtained were 100-150 nm in size and homogeneously anchored on graphene sheets as spacers to keep the neighboring sheets separated. The FeC2O4-graphene exhbited excellent performances in absorption propties and supercapacitor make potential uses as environment and energy storage materials in future.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 463-464)

Pages:

533-537

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.

Google Scholar

[2] Y. Zhu, S. Murali,W. Cai, X. Li, J.W. Suk, J. R. Potts, R. S. Ruoff, Adv. Mater. 2010, 22, 3906.

Google Scholar

[3] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 2007, 45, 1558.

DOI: 10.1016/j.carbon.2007.02.034

Google Scholar

[4] S. Gilje, S. Han, M. Wang, K. L. Wang, R. B. Kaner, Nano Lett. 2007, 7, 3394.

Google Scholar

[5] D. Li, M. B. Muller, S. Gilje, R. B. Kaner, G. G. Wallace, Nat. Nanotechnol. 2008, 3, 101.

Google Scholar

[6] X. B. Fan, W. C. Peng, Y. Li, X. Y. Li, S. L. Wang, G. L. Zhang, F. B. Zhang, Adv. Mater. 2008, 20, 4490.

Google Scholar

[7] A. K. Geim, Science 2009, 324, 1530.

Google Scholar

[8] S. Park, R. S. Ruoff, Nat. Nanotechnol. 2009, 4, 217.

Google Scholar

[9] H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud_homme, R. Car, D. A. Saville, I. A. Aksay, J. Phys. Chem. B 2006, 110, 8535.

DOI: 10.1021/jp060936f

Google Scholar

[10] R. L. McCreery, Chem. Rev. 2008, 108, 2646.

Google Scholar

[11] C. E. Banks, T. J. Davies, G. G. Wildgoose, R. G. Compton, Chem. Commun. 2005, 829.

Google Scholar

[12] B. J. Li, H. Q. Cao, J. Mater. Chem. 10. 1039/c0jm03253k.

Google Scholar

[13] Y. Qian, S.B. Lu, F. L. Gao , Mater. Lett.   2011, 65, 56.

Google Scholar

[14] W. Qin, X. Li, J PHYS CHEM C    2010, 114, 19009-19015.

Google Scholar

[15] C. Lee, X. Wei, J. W. Kysar, J. Hone, Science 2008, 321, 385.

Google Scholar

[16] M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Nano Lett. 2008, 8, 3498.

Google Scholar

[17] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 2006, 442, 282.

DOI: 10.1038/nature04969

Google Scholar

[18] D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, Chem. Soc. Rev. 2010, 39, 228.

Google Scholar

[19] V. C. Tung, M. J. Allen, Y. Yang, R. B. Kaner, Nat. Nanotechnol. 2009, 4, 25.

Google Scholar

[20] H. B. Li, X. C. Gui, L. H. Zhang, S. S. Wang, C. Y. Ji, J. Q. Wei, K. L. Wang, H. W. Zhu, D. H. Wu and A. Y. Cao, Chem. Comm., 2010, 46, 7966.

Google Scholar

[21] B. J. Li and H. Q. Cao, J. Mater. Chem., 2010, DOI: 10. 1039/c0jm03253k.

Google Scholar

[22] Li X L, Liu J F and Li Y D 2003 Mater. Chem. Phys. 80 222.

Google Scholar

[23] G. X. Wang, J. Yang, J. Park, X. L. Gou, B. Wang, H. Liu and J. Yao, J. Phys. Chem. C, 2008, 112, 8192.

Google Scholar

[24] C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, Phys. Rev. Lett., 2006, 97, 187401.

DOI: 10.1103/physrevlett.97.187401

Google Scholar

[25] Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng and Z. X. Shen, Nano Lett., 2007, 7, 2758.

Google Scholar

[26] N. Mancilla, V. Caliva, M. C. D'Antonio, A. C. Gonzalez- Baro, E. J. Baran, J. Raman Spectrosc. 2009, 40, 915.

Google Scholar

[27] A. Hagfeldt and M. Gratzel, Chem. Rev., 1995, 95, 49.

Google Scholar