[1]
R. Azouzi and M. Guillot, On-line prediction of surface finish and dimensional deviation in turning using neural network based sensor fusion, IJMTM, (1996), vol. 1201-1217.
DOI: 10.1016/s0890-6955(97)00013-8
Google Scholar
[2]
Durmus Karayel, m, Prediction and control of surface roughness in CNC lathe using artificial neural network, Journal of MPT, (2009), vol. 3125-3137.
DOI: 10.1016/j.jmatprotec.2008.07.023
Google Scholar
[3]
Tugrul Ozel, Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks, IJMTM, (2004), vol. 467-479.
Google Scholar
[5]
K.A. Risbood, et. al, Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process, JMPT, (2002), vol. 203-214.
DOI: 10.1016/s0924-0136(02)00920-2
Google Scholar
[6]
F. Nassirpour, S.M. Wu, Statistical evaluation of surface finish and its relationship to cutting parameters in turning, IJMTD, (1977), vol. 197–208.
DOI: 10.1016/0020-7357(77)90014-2
Google Scholar
[7]
M. Kaladhar et al., Optimization of process parameters in turning of AISI 202 austenitic stainless steel, ARPN Journal of Engineering and Applied Sciences, (2010), vol. 1819-6608.
Google Scholar
[8]
K. Palanikumar, Application of Taguchi and RSM for surface roughness in machining glass FRPs by PCD tooling, IJAMT, (2006), DOI 10. 1007/s00170-006-0811-0.
Google Scholar
[9]
A. Mital and M. Mehta, Surface finish prediction models for fine turning, IJPR, (1988), vol. 1861–1876.
DOI: 10.1080/00207548808948001
Google Scholar
[10]
D. Yan, N. Popplewell, S. Balkrishnan and J.E. Kaye, On-line prediction of surface roughness in finish turning, Engineering Design Automation, (1996), vol. 115-126.
Google Scholar
[11]
Dimla, E. and Dimla, S, Application of perceptron neural network to tool-state classification in a metal-turning operation, Engg. Appl of AI, (1999), vol. 471–477.
DOI: 10.1016/s0952-1976(99)00015-9
Google Scholar
[12]
O. B. Abouelatta and J. Madl, Surface roughness prediction based on cutting parameters and tool vibrations in turning operations, J of MPT, (2001), vol. 269–277.
DOI: 10.1016/s0924-0136(01)00959-1
Google Scholar
[13]
Shridhar D. Mhalsekar et. al, Determination of Transient and Steady State Cutting in Face Milling Operation Using RQA, ARPN J of Eng. and App. Sciences, (2009), vol. 4-10.
Google Scholar
[14]
Asok K Sen, et. al, Analysis of cycle-to-cycle pressure oscillations in a diesel engine, Mechanical Systems and Signal Processing, (2008), vol. 362-373.
DOI: 10.1016/j.ymssp.2007.07.015
Google Scholar
[15]
C. H Jun and S. H Suh, Statistical tool breakage detection schemes based on vibration signals in NC milling, IJMTM, (1999), vol. 1733-1746.
DOI: 10.1016/s0890-6955(99)00028-0
Google Scholar
[16]
L. Wang et al., Dynamic characteristics of An NC table with phase space reconstruction, Frontier of Mechanical Engineering, (2009), vol. 179-183.
Google Scholar