Dependence of the Resonance Frequency of Mircobridge Resonators on the Thermal Power and Vacuum

Article Preview

Abstract:

Microbridge resonators have been widely used as sensing elements to measure various parameters, such as pressure, acceleration, biochemical adsorption and reactions, mass-flow, infrared ray et al. But no model has been built to calculate quantitatively the shift of resonance frequency due to heat convection, incident infrared ray, excited thermal power drift and ambient air pressure. In this paper, a theoretical analysis is given to calculate the resonance frequency shift due to the thermal power (static heating power and dynamic heating power) fluctuation and the added mass of the ambient air. The model can be used to design resonant sensors based on microbridge resonator, such as resonant mass-flow sensors, resonant IR detectors, resonant biochemical sensors and resonant vacuum gauge, et al.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

14-22

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Greenwood.J.C, Satchell.D.W, Miniature silicon resonant pressure sensors, IEE Proc,135 (1988) 369-372.

DOI: 10.1049/ip-d.1988.0056

Google Scholar

[2] Kinji Harada,Kyoichi Ikeda, Hideki Kuwayama, Hidekazu Murayama, Various applications of resonant pressure sensors chip based on 3-D micromachining, Sensors and Actuators A.73(1999)261-266.

DOI: 10.1016/s0924-4247(98)00245-3

Google Scholar

[3] Deyong Chen, Dafu Cui, Zhongyao Yu, et al, Thermally excited SiN microbridge resonant pressure sensor. Proc. SPIE. 4408(2001)548.

Google Scholar

[4] Burrer.C, Esteve.J, Lora-Tamayo.E, Resonant silicon accelerometers in bulk micromachining technology-an approach, J Microelectromechanical Systems. 5(1996)122-130.

DOI: 10.1109/84.506200

Google Scholar

[5] Yanqing Lu, Venkata Chivukula, MingWang and Hai-Feng Ji, Simulation and fabrication of SiO2-based piezoresistive microbridges for chem/biosensors, J. Micromech. Microeng.16 (2006)692–698.

DOI: 10.1088/0960-1317/16/4/004

Google Scholar

[6] Alan L Dring, Barry E Jones, Integrated on-line multisensing of fluid flow using a mechanical resonator, Sensors and Actuators. 85(2000)275-279.

DOI: 10.1016/s0924-4247(00)00429-5

Google Scholar

[7] H.J.M. Geijselaers, H.Tijdeman, The dynamic mechanical characteristics of a resonating microbridge mass-flow sensor, Sensors and Actuators A.29(1991) 37-41.

DOI: 10.1016/0924-4247(91)80029-o

Google Scholar

[8] C.Cabuz, S.Shoji, K.Fukatsu,et al, Fabrication and packaging of a resonant infrared sensor integrated in silicon, Sensors and Actuators A. 43(1994)92-99.

DOI: 10.1016/0924-4247(93)00671-p

Google Scholar

[9] Combes David J, Brunson Kevin M,Mcnie Mark E, et al, Thermal detector, Application Number: EP20040743226,Pub. No.:WO/2005/003704.

Google Scholar

[10] Harrie A.C. Tilmans, Miko Elwenspoek and Jan H.J. Fluitman, Micro resonant force gauges, Sensors and Actuators A.30(1992)35-53.

DOI: 10.1016/0924-4247(92)80194-8

Google Scholar

[11] A.V. Churenkov, Photothermal excitation and self-excitation of silicon microresonators, Sensors and Actuators A. 39(1993)141-148.

DOI: 10.1016/0924-4247(93)80211-x

Google Scholar

[12] T.S.J. Lammerink, M.Elwenspoek, R.H. Vanouwerkerk,et al, Performance of thermally excited resonators, Sensors and Actuators A. 21-23(1990)352-356.

DOI: 10.1016/0924-4247(90)85070-k

Google Scholar

[13] Blom.F.R, Bouwstra.S, M.Elwenspoek,et al, Dependence of the quality factor of micromachined silicon microbridge resonators on pressure and geometry, J.Vac.Sci.Technol.B, 10 (1992)19-26.

DOI: 10.1116/1.586300

Google Scholar

[14] Hiroshi Hosaka,Kiyoshi Itao,Susumu Kuroda, Damping characteristics of microbridge- shaped microoscillators. Sensors and Actuators A. 49(1995)87-95.

DOI: 10.1016/0924-4247(95)01003-j

Google Scholar

[15] Han Jianqiang, Zhu Changchun, Liu Junhua, et al, A novel temperature-compensating structure for micromechanical bridge resonator, J. Micromech. Microeng. 15(2005)702–705.

DOI: 10.1088/0960-1317/15/4/005

Google Scholar

[16] Han Jianqiang, Zhu Changchun, Liu Junhua, et al, Determining the thickness and residual strain of thermally excited micromicrobridge resonators by resonance frequency, Chinese Journal of Electron Devices. 26(2003)329-332.

Google Scholar

[17] Brand.O, Baltes.H,Baldenweg.U,Themally excited silicon oxide microbridge and bridge resonators in CMOS technology. IEEE Transactions on Electron Devices, 40(1993) 1745- 1753.

DOI: 10.1109/16.277330

Google Scholar

[18] Han Jianqiang, Zhu Changchun, Liu Junhua, et al, Amicromechanical bridge-shaped voltage- controlled oscillator, Science in China Ser. E Technological Sciences. 47(2004):26-32.

Google Scholar