[1]
Greenwood.J.C, Satchell.D.W, Miniature silicon resonant pressure sensors, IEE Proc,135 (1988) 369-372.
DOI: 10.1049/ip-d.1988.0056
Google Scholar
[2]
Kinji Harada,Kyoichi Ikeda, Hideki Kuwayama, Hidekazu Murayama, Various applications of resonant pressure sensors chip based on 3-D micromachining, Sensors and Actuators A.73(1999)261-266.
DOI: 10.1016/s0924-4247(98)00245-3
Google Scholar
[3]
Deyong Chen, Dafu Cui, Zhongyao Yu, et al, Thermally excited SiN microbridge resonant pressure sensor. Proc. SPIE. 4408(2001)548.
Google Scholar
[4]
Burrer.C, Esteve.J, Lora-Tamayo.E, Resonant silicon accelerometers in bulk micromachining technology-an approach, J Microelectromechanical Systems. 5(1996)122-130.
DOI: 10.1109/84.506200
Google Scholar
[5]
Yanqing Lu, Venkata Chivukula, MingWang and Hai-Feng Ji, Simulation and fabrication of SiO2-based piezoresistive microbridges for chem/biosensors, J. Micromech. Microeng.16 (2006)692–698.
DOI: 10.1088/0960-1317/16/4/004
Google Scholar
[6]
Alan L Dring, Barry E Jones, Integrated on-line multisensing of fluid flow using a mechanical resonator, Sensors and Actuators. 85(2000)275-279.
DOI: 10.1016/s0924-4247(00)00429-5
Google Scholar
[7]
H.J.M. Geijselaers, H.Tijdeman, The dynamic mechanical characteristics of a resonating microbridge mass-flow sensor, Sensors and Actuators A.29(1991) 37-41.
DOI: 10.1016/0924-4247(91)80029-o
Google Scholar
[8]
C.Cabuz, S.Shoji, K.Fukatsu,et al, Fabrication and packaging of a resonant infrared sensor integrated in silicon, Sensors and Actuators A. 43(1994)92-99.
DOI: 10.1016/0924-4247(93)00671-p
Google Scholar
[9]
Combes David J, Brunson Kevin M,Mcnie Mark E, et al, Thermal detector, Application Number: EP20040743226,Pub. No.:WO/2005/003704.
Google Scholar
[10]
Harrie A.C. Tilmans, Miko Elwenspoek and Jan H.J. Fluitman, Micro resonant force gauges, Sensors and Actuators A.30(1992)35-53.
DOI: 10.1016/0924-4247(92)80194-8
Google Scholar
[11]
A.V. Churenkov, Photothermal excitation and self-excitation of silicon microresonators, Sensors and Actuators A. 39(1993)141-148.
DOI: 10.1016/0924-4247(93)80211-x
Google Scholar
[12]
T.S.J. Lammerink, M.Elwenspoek, R.H. Vanouwerkerk,et al, Performance of thermally excited resonators, Sensors and Actuators A. 21-23(1990)352-356.
DOI: 10.1016/0924-4247(90)85070-k
Google Scholar
[13]
Blom.F.R, Bouwstra.S, M.Elwenspoek,et al, Dependence of the quality factor of micromachined silicon microbridge resonators on pressure and geometry, J.Vac.Sci.Technol.B, 10 (1992)19-26.
DOI: 10.1116/1.586300
Google Scholar
[14]
Hiroshi Hosaka,Kiyoshi Itao,Susumu Kuroda, Damping characteristics of microbridge- shaped microoscillators. Sensors and Actuators A. 49(1995)87-95.
DOI: 10.1016/0924-4247(95)01003-j
Google Scholar
[15]
Han Jianqiang, Zhu Changchun, Liu Junhua, et al, A novel temperature-compensating structure for micromechanical bridge resonator, J. Micromech. Microeng. 15(2005)702–705.
DOI: 10.1088/0960-1317/15/4/005
Google Scholar
[16]
Han Jianqiang, Zhu Changchun, Liu Junhua, et al, Determining the thickness and residual strain of thermally excited micromicrobridge resonators by resonance frequency, Chinese Journal of Electron Devices. 26(2003)329-332.
Google Scholar
[17]
Brand.O, Baltes.H,Baldenweg.U,Themally excited silicon oxide microbridge and bridge resonators in CMOS technology. IEEE Transactions on Electron Devices, 40(1993) 1745- 1753.
DOI: 10.1109/16.277330
Google Scholar
[18]
Han Jianqiang, Zhu Changchun, Liu Junhua, et al, Amicromechanical bridge-shaped voltage- controlled oscillator, Science in China Ser. E Technological Sciences. 47(2004):26-32.
Google Scholar