Chemical Deposition Method for Synthesis of Pt-TiO2 Composite Nanotubes with Photoelectrochemical Activity

Article Preview

Abstract:

Pt nanoparticles were successfully assembled in self-organized TiO2 nanotubes by a chemical deposition method. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were used for characterizing the surface morphology and phase composition. Photocurrent response activity was measured. Different morphology of Pt-TiO2 NTs exhibited different photocurrent generation efficiency. High density Pt nanoparticles depositing on TiO2 NTs decreased the photocurrent of Pt-TiO2 electrodes. It was because the high density Pt nanoparticles could become the recombination centers of photoelectrons and holes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

276-282

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.D. Baker, V.P. Kamat, Adv. Funct. Mater. 19 (2009) 805-811.

Google Scholar

[2] M. Paulose, K. Shankar, O.K. Varghese, G.K. Mor, B. Hardin, C.A. Grimes, Nanotechnology 17 (2006) 1446-1448.

DOI: 10.1088/0957-4484/17/5/046

Google Scholar

[3] J. Nowotny, T. Bak, M.K. Nowotny, L.R. Sheppard, J. Phys. Chem. B 110 (2006) 18492-18495.

DOI: 10.1021/jp063699p

Google Scholar

[4] G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Nano Lett. 6 (2006) 215-218.

Google Scholar

[5] J.F. Yan, F. Zhou, J. Mater. Chem. 21 (2001) 9406-9418.

Google Scholar

[6] G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Crimes, Nano Lett. 5 (2005) 191-195.

Google Scholar

[7] J.A. Seabold, K. Shankar, R.H.T. wilke, M. Paulose, O.K. Varghese, Crimes, K.S. Choi, Chem. Mater. 20 (2008) 5266-5273.

Google Scholar

[8] I. Paramasivam, J.M. Macak, P. Schmuki, Electrochem. Commun. 10 (2008) 71-75.

Google Scholar

[9] S.K. Mohapatra, N. Kondamudi, S. Banerjee, M. Misra, Langmuir 24 (2008) 11276-11281.

Google Scholar

[10] L. Xing, J.B. Jia, Y.Z. Wang, B.L. Zhang, S.J. Dong, Int. J. Hydrogen Energy 35 (2010) 12169-12173.

Google Scholar

[11] Y.H. Zhang, Y.N. Yang, P. Xiao, X.N. Zhang, L. Lu, L. Li, Mater. Lett. 63 (2009) 2429-2431.

Google Scholar

[12] W.T. Sun, Y. Yu, H.Y. Pan, X.F. Gao, Q. Chen, L.M. Peng, J. Am. Chem. Soc. 130 (2008) 1124-1125.

Google Scholar

[13] H. Moualkia, S. Hariech, M.S. Aida, Thin Solid Films 518 (2009) 1259-1262.

DOI: 10.1016/j.tsf.2009.04.067

Google Scholar

[14] R. Vogel, P. Hoyer, H. Weller, J. Phys. Chem. 98 (1994) 3183-3188.

Google Scholar

[15] Z.G. Zhao, Z.F. Liu, M. Miyauchi, Adv. Funct. Mater. 20 (2010) 4162–4167.

Google Scholar

[16] G.Y. Lan, Z.S. Yang, Y.W. Lin, Z.H. Lin, H.Y. Liao, H.T. Chang, J. Mater. Chem. 19 (2009) 2349-2355.

Google Scholar

[17] L.M. Peter, K.G.U. Wijayanyha, D.J. Riley, J.P. Waggett, J. Phys. Chem. B 107 (2003) 8378-8388.

Google Scholar

[18] C. Ratanatawanate, Y. Tao, K. J. Balkus, J. Phys. Chem. C 113 (2009) 10755-10760.

Google Scholar

[19] J.H. Park, S. Kim, A.J. Bard, Nano Lett. 6 (2006) 24-28.

Google Scholar

[20] X. Liu, Z.Q. Liu, J. Zheng, X. Yan, D.D. Li, S. Chen, W. Chu, J. Alloys Compd. 509 (2011) 9970-9976.

Google Scholar

[21] L. Sun, J. Li, C.L. Wang, S.F. Li, H.B. Chen, C.J. Lin, Sol. Energy Mater. Sol. Cells. 93 (2009) 1875-1880.

Google Scholar

[22] Q. Kang, Q.Z. Lu, S.H. Liu, L.X. Yang, L.F. Wen, S.L. Luo, Q.Y. Cai, Biomaterials 31 (2010) 3317-3326.

Google Scholar

[23] H. Park, W. Choi, M.R. Hoffmann, J. Mater. Chem. 18 (2008) 2379-2385.

Google Scholar

[24] E. Elmalem, A.E. Saunders, R. Costi, A. Salant, U. Banin, Adv. Mater. 20 (2008) 4312-4317.

DOI: 10.1002/adma.200800044

Google Scholar

[25] Y.Y. Song, Z.D. Gao, P. Schmuki, Electrochem. Commun. 13 (2001) 290-293.

Google Scholar

[26] Y. Hou, X.Y. Li, Q.D. Zhao, X. Quan, G.H. Chen, Adv. Funct. Mater. 20 (2010) 2165-2174.

Google Scholar