A Novel Impulsive Control Synchronization of a Lorenz Chaotic Scheme with Special Parameters

Article Preview

Abstract:

One of the common problems of chaos-based secure communication is all these methods need control signal be transmitted in public channel between connectors. Attacker can reconstruct the chaotic system or estimate parameters by using the information of the chaotic system which can be obtained by analyzing the control signal. Therefore we propose a hybrid chaotic synchronization control scheme which contains both continuous chaotic system with Special oscillating parameters and discrete chaotic system. The two systems can get synchronized without control signal transmitting which has reduced the risk of the security.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 466-467)

Pages:

1305-1309

Citation:

Online since:

February 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.M. Pecora, T.L. Carroll, Synchronization in chaotic systems, Phys Rev Lett, 1990, 64, p: 821-824.

DOI: 10.1103/physrevlett.64.821

Google Scholar

[2] T. Stojanovski, L. Kocarev, U. Parlitz. Driving and synchronizing by chaotic impulses,. Physics Review E, 1996(54), p: 2128-2131.

DOI: 10.1103/physreve.54.2128

Google Scholar

[3] S. Sivaprakasam, E.M. Shahverdiev, P.S. Spencer, Experimental demonstration of anticipating synchronization in chaotic semiconductor lasers with optical feedback, Physics Review Letters, 2001(87), p: 154101-154104.

DOI: 10.1103/physrevlett.87.154101

Google Scholar

[4] C. Masoller, Anticipation in the synchronization of chaotic semiconductor lasers with optical feedback, Phys Rev Lett, 2001(86), p: 2782-2785.

DOI: 10.1103/physrevlett.86.2782

Google Scholar

[5] Feki, Moez, An adaptive chaos synchronization scheme applied to secure communication,. Chaos, Solitons & Fractals, 2003(18), p: 141-148.

DOI: 10.1016/s0960-0779(02)00585-4

Google Scholar

[6] T.L. Liao, S.H. Tsai, Adaptive synchronization of chaotic systems and its application to secure communications,. Chaos, Solitons & Fractals, 2000(11), p: 1387-1396.

DOI: 10.1016/s0960-0779(99)00051-x

Google Scholar

[7] A. Maritan, J.R. Banavar, Chaos, noise, and synchronization, Phys Rev Lett, 1994(72), p: 1451-1454.

DOI: 10.1103/physrevlett.72.1451

Google Scholar

[8] L. Kocarev, U. Parlitz, General approach for chaotic synchronization with applications to communication, Phys Rev Lett, 1995(74), p: 5028-5031.

DOI: 10.1103/physrevlett.74.5028

Google Scholar

[9] G. Alvarez, S. Li, Some basic cryptographic requirements for chaos-based cryptosystems, International Journal of Bifurcation and Chaos, 2006, 16(8), p: 2129-2151.

DOI: 10.1142/s0218127406015970

Google Scholar

[10] V. Lakshmikantham, D. D. Bainov, and P. S. Simeonov, Theory of impulsive differential equations,. Singapore: World Scientific, (1989).

DOI: 10.1142/0906

Google Scholar

[11] X.G. Wu, Z.X. Wang, Estimating parameters of chaotic systems synchronized by external driving signal, Chaos Solitons & Fractals, 2007(33), p: 558-594.

DOI: 10.1016/j.chaos.2006.01.051

Google Scholar

[12] P.G. Vaidya, S. Angadi, Decoding chaotic cryptography without access to the superkey, Chaos Solitons & Fractals, 2003(17), p: 379-386.

DOI: 10.1016/s0960-0779(02)00377-6

Google Scholar

[13] L. Liu, X.G. Wu, H.P. Hu, Estimating system parameters of Chua's circuit from synchronizing signal, Physics Letter A, 2004(324), p: 36-41.

DOI: 10.1016/j.physleta.2004.02.047

Google Scholar