[1]
C. Buschmann, E. Nagel, In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation, Int. J. Remote Sens. 14 (1993) 711-722.
DOI: 10.1080/01431169308904370
Google Scholar
[2]
A.A. Gitelson, M.N. Merzlyak, Quantitative estimation of chlorophyll a using reflectance spectra: experiments with autumn chestnut and maple leaves, J. Photochem Photobiol (B). 22 (1994 a) 247-252.
DOI: 10.1016/1011-1344(93)06963-4
Google Scholar
[3]
A.A. Gitelson, M.N. Merzlyak, Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum andAcer platanoides leaves. Spectral features and relation to chlorophyll estimation,J. Plant Physiol. 143 (1994 b) 286-292.
DOI: 10.1016/s0176-1617(11)81633-0
Google Scholar
[4]
J. Markwell, J. C. Osterman, J. L. Mitchell, Calibration of the Minolta SPAD-502 leaf chlorophyll meter, Photosynth Res. 46 (1995) 467-472.
DOI: 10.1007/bf00032301
Google Scholar
[5]
J.A. Gamon, J.S. Surfus, Assessing leaf pigment content and activity with a reflectometer. New Phytol. 143 (1999) 105-117.
DOI: 10.1046/j.1469-8137.1999.00424.x
Google Scholar
[6]
A.A. Gitelson, M.N. Merzlyak, O.B. Chivkunova, Optical properties and non-destructive estimation of anthocyanin content in plant leaves. Photochem Photobiol, Photochem Photobiol. 74 (2001) 38-45.
DOI: 10.1562/0031-8655(2001)074<0038:opaneo>2.0.co;2
Google Scholar
[7]
A.A. Gitelson,Y. Zur, O.B. Chivkunova M.N. Merzlyak, Assessing carotenoid content in plant leaves with reflectance spectroscopy, Photochem Photobiol. 75 (2002) 272-281.
DOI: 10.1562/0031-8655(2002)075<0272:accipl>2.0.co;2
Google Scholar
[8]
P.J. Curran, J.L. Dungan, H.L. Gholz, Exploring the relationship between reflectance red edge and chlorophyll content in slash pine, Tree Physiology. 7 (1990) 33-48.
DOI: 10.1093/treephys/7.1-2-3-4.33
Google Scholar
[9]
A.A. Gitelson, M.N. Merzlyak,Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll, J. Plant Physiol. 148 (1996) 494-500.
DOI: 10.1016/s0176-1617(96)80284-7
Google Scholar
[10]
G.A. Blackburn,Quantifying chlorophylls and carotenoids at leaf and canopy scales: An evaluationof some hyper-spectral approaches, Remote Sens. Environ. 66 (1998) 273-285.
DOI: 10.1016/s0034-4257(98)00059-5
Google Scholar
[11]
B. Datt, Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total carotenoid content in eucalyptus leaves, Remote Sens. Environ. 66 (1998) 111-121.
DOI: 10.1016/s0034-4257(98)00046-7
Google Scholar
[12]
B. Datt, Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves, Int. J. Remote Sens. 20 (1999) 2741-2759.
DOI: 10.1080/014311699211778
Google Scholar
[13]
M.L. Adams, W.D. Philpot, W.A. Norvell, Yellowness index: An application of spectral second derivatives to estimate chlorosis of leaves in stressed vegetation. Int. J. Remote Sens. 20 (1999) 3663-3675.
DOI: 10.1080/014311699211264
Google Scholar
[14]
G.A. Carter, A.K. Knapp,Leaf optical properties in higher plants:linking spectral characteristics to stress and chlorophyll concentration, Am. J. Bot. 84 (2001) 677-684.
DOI: 10.2307/2657068
Google Scholar
[15]
G. Le Maire, C. Francois, E. Dufrene, Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements, Remote Sens. Environ. 89 (2004) 1-28.
DOI: 10.1016/j.rse.2003.09.004
Google Scholar
[16]
A.A. Gitelson, A. Vina, V. Ciganda, D.C. Rundquist, T.J. Arkebauer, J. Geophys, Remote estimation of canopy chlorophyll content in crops, J. Geophysi. Res. Let. Res. Lett. 32:L08403 (2005) doi:10.1029/2005 GL022688.
DOI: 10.1029/2005gl022688
Google Scholar
[17]
A.A. Gitelson, A. Vina, S.B. Verma, D.C. Rundquist, T.J. Arkebauer, G. Keydan, B. Leavitt, V. Ciganda, G.G. Burba, A.E. Suyker, Relationship between gross primary production and chlorophyll content in crops: Implications for the synoptic monitoring of vegetation productivity, J.Geophysi.Res.Lett. 111: D08S11(2006).
DOI: 10.1029/2005jd006017
Google Scholar
[18]
Y.Peng, A.A. Gitelson,G.Keydan D.C. Rundquist,W.Moses, Remote estimation of gross primary production in maize and support for a new paradigm based on total crop chlorophyll content, Remote Sens. Environ. 115(2011) 978-989.
DOI: 10.1016/j.rse.2010.12.001
Google Scholar
[19]
A.A. Gitelson, O.B. Chivkunova, M.N. Merzlyak,Nondestrucitve estimation of anthocyanins and chlorophylls in anthocyanic leaves, Am.J.Botany. 96(2009) 1861-1868.
DOI: 10.3732/ajb.0800395
Google Scholar
[20]
M.Steele, A.A. Gitelson, D.C. Rundquist, Nondestructive estimation of leaf chlorophyll content in Grapes,Am.J.Enol.Vitic. 59(2008) 299-305.
DOI: 10.5344/ajev.2008.59.3.299
Google Scholar
[21]
J.H. Zhang,J.Wang,H.Chao, Prediction of Chlorophyll Concentration of Rice Based on Spectral Absorption,Transmittance and Reflectance, Chinese Agr. Sci.Bull.26 (2010) 78-83. (in chinese)
Google Scholar
[22]
F.J. Adamsen P.J. Pinter Jr, E.M. Barnes R.L. Lamorte G.W. Wall S.W. Leavitt, A.Kimball, Measuring wheat senescence with a digital camera.Crop Sci. 39 (1999)719-724.
DOI: 10.2135/cropsci1999.0011183x003900030019x
Google Scholar
[23]
Y.Manetas, G. Grammatikopoulus, A.Kyparissis, The use of the portable,non-destructive, SPA D-502 (Minolta) chlorophyll meter with leaves of varying trichome density and anthocyanin content, J.Plant Physi.153(1998) 513-516.
DOI: 10.1016/s0176-1617(98)80182-x
Google Scholar
[24]
Information on http: //www.shznews.com/ Category_145/ Index.aspx
Google Scholar
[25]
J.U.H. Eitel, D.S. Long, P.E. Gessler, E.R. Hunt, Combined Spectral Index to Improve Ground-Based Estimates of Nitrogen Status in Dryland Wheat,Agron. J. 100 (2008) 1694-1702.
DOI: 10.2134/agronj2007.0362
Google Scholar