Observation of Dislocations Configuration of TiAl Alloy during Fatigue Tests at Elevated Temperatures

Article Preview

Abstract:

Isothermal fatigue (IF) tests were carried out on the gamma-TiAl alloy in the temperature of 500°C, 650°C and 800°C under mechanical strain control in order to evaluate its cyclic deformation behaviors at elevated temperature. Cyclic deformation curves, stress-strain hysteresis loops under different temperature-strain cycles were analyzed and dislocations configurations were also observed by TEM. The mechanism of cyclic hardening or softening during IF tests was also discussed. Results show that during the IF tests, The hysteresis loops were almost symmetrical above 600 °C, such as 650 °C and 800 °C; The hysteresis loops at the temperature of 500 °C generated two apparent asymmetry, one was zero asymmetry, the other was tensile and compressive asymmetry; Dislocation configuration and slip behaviors are contributed to cyclic hardening or cyclic softening.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 468-471)

Pages:

2193-2200

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kim Y W. Strength and ductility in TiAl alloys[J]. Intermetallics. 1998, 6(7-8): 623-628.

DOI: 10.1016/s0966-9795(98)00037-5

Google Scholar

[2] Liu C T, Kim Y W. Room-temperature environmental embrittlement in a TiAl alloy[J]. Scripta Metallurgica et Materialia, 1992, 27(5): 599-603.

DOI: 10.1016/0956-716x(92)90347-h

Google Scholar

[3] Huang J S, Kim Y W. Creep deformation and fracture of a two-phase TiAl alloy[J]. Scripta Metallurgica et Materialia, 1991, 25(8): 1901-1906.

DOI: 10.1016/0956-716x(91)90325-u

Google Scholar

[4] Leyens C, Peters M. Translated by Chen Zhenhua. Titanium and titanium alloys[M]. BeiJing:2005, Chemical industry press: 94-99.

Google Scholar

[5] Zhang Chengjun, Fu Hengzhi, Xu Daming, Guo Jingjie, Bi Weisheng, Su Yanqing. Feasibility of integrated seed making and directional solidification of TiAl alloy using cold crucible[J]. Transactions of Nonferrous Metals Society of China. 2009, 19(2): 330-334.

DOI: 10.1016/s1003-6326(08)60273-3

Google Scholar

[6] Du X W, Zhu Jing, Zhang X, Cheng Z Y, Kim Y W. Creep induced α2→β2 phase transformation in a fully-lamellar TiAl alloy[J]. Scripta Materialia. 2000, 43(7): 597-602.

DOI: 10.1016/s1359-6462(00)00443-7

Google Scholar

[7] Yoshihara M, Kim Y W. Oxidation behavior of gamma alloys designed for high temperature applications[J]. Intermetallics. 2005, 13(9): 952-958.

DOI: 10.1016/j.intermet.2004.12.007

Google Scholar

[8] Xiao Daihong, Huang Baiyun. Superplastic behavior and microstructure evolution of as-cast Ti-47Al-8Cr-2Nb alloy at lower temperature[J]. The Chinese Journal of Nonferrous Metal. 2008, 18(10): 1749-1756.(in Chinese)

Google Scholar

[9] Zhuang Junhong, Huang Baiyun, He Yuehui, MENG Li-ping. Mechanical behaviors of TiAl alloy during low temperature superplastic deformation[J]. The Chinese Journal of Nonferrous Metals, 2003, 13(2): 442-446. (in Chinese)

Google Scholar

[10] Malakondaiah G, Kim Y W, Nicholas T. Some observations on the ambient temperature deformation behavior of fully lamellar Ti-46Al-2Nb-2Cr alloy[J]. Scripta Metallurgica et Materialia. 1994, 30(7): 939-944.

DOI: 10.1016/0956-716x(94)90419-7

Google Scholar

[11] Roth M, Biermann H. Thermo-mechanical fatigue behaviour of the γ-TiAl alloy TNB-V5[J]. Scripta Materialia. 2006; 54: 137-141.

DOI: 10.1016/j.scriptamat.2005.09.049

Google Scholar

[12] Christ H J, Fischer F O R, Maier H J. High-temperature fatigue behavior of a near-γ titanium aluminide alloy under isothermal and thermomechanical conditions[J]. Materials Science and Engineering A. 2001, 319-321: 625-630.

DOI: 10.1016/s0921-5093(00)02013-x

Google Scholar

[13] Malkondaiah G and Nicholas T. High-temperature low-cycle fatigue of a gamma titanium aluminide Ti-46Al-2Nb-2Cr[J]. Metallurgical and Materials Transactions A. 1996, 27(8): 2239-2251.

DOI: 10.1007/bf02651878

Google Scholar

[14] Xiang Hongfu, Gao Qiang, Cui Yuyou, Li Shouxin, Yang Rui. Study on thermo-mechanical fatigue of Ti-46.5Al-5Nb alloy[J]. Acta Metallurgica Sinica. 2002, 38: 451-453. (in Chinese)

Google Scholar

[15] Xiang Hongfu. Study of fatigue behavior and deformation mechanisms of γ-TiAl alloys [D]. Shenyang: Institue of metal research, Chinese academy of sciences. 2006: 25-78.(in Chinese)

Google Scholar

[16] Bauer V, Christ H J. Thermomechanical fatigue behaviour of a third generation γ-TiAl intermetallic alloy[J]. Intermetallics. 2009, 17(5): 370-377.

DOI: 10.1016/j.intermet.2008.11.013

Google Scholar

[17] Roth M and Biermann H.Thermo-mechanical fatigue behaviour of a modern γ-TiAl alloy[J]. International Journal of Fatigue. 2008, 30(2): 352-356.

DOI: 10.1016/j.ijfatigue.2007.01.049

Google Scholar

[18] Xiang Hongfu, Dai Anlun, Wang Jiheng, Li Hui, Yang Rui. Cyclic deformation behaviors of Ti-46Al-2Cr-2Nb-0.15B alloy during thermo-mechanical fatigue tests[J]. Transactions of Nonferrous Metals Society of China. 2010, 20: 2174-2180.

DOI: 10.1016/s1003-6326(09)60438-6

Google Scholar

[19] Xiang Hongfu, Wang Jiayou, Cui Yuyou, Yang Rui. Study on low cycle fatigue behavior of TiAl(Cr,Nb,B) alloy[J]. Rare Metal Materials and Engineering. 2008, 37(3s): 689-692.

Google Scholar

[20] Cui W F , Liu C M, Bauer V, Christ H J. Thermomechanical fatigue behaviours of a third generation γ-TiAl based alloy[J]. Intermetallics. 2007, 15(5-6): 675-678.

DOI: 10.1016/j.intermet.2006.10.027

Google Scholar