Separation of Antihypertensive Peptides Derived from Soybean Protein Isolated with Ultrafiltration Technology

Article Preview

Abstract:

Antihypertensive peptides derived from soybean protein isolated were separated by ultrafiltration technology. The antihypertensive peptides was ultrafiltrated by the membrane with 1000 molecular weight cut-off. The effects of pressure, concentration,temperature and time during ultrafiltration were studied. In the experiment the method of response surface has been utilized to improve the ultrafiltrate film with 1000, and the best appropriate ultrafiltrate condition is that: ultrafitration pressure 0.38Mpa, PH value 6, the temperature 44°C, the time 100min. The analytical predictor of response surface under this ultrafiltration condition is 29.09912 L/(m2h), which has been verified in verification test.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 468-471)

Pages:

2931-2936

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Abubakar A, Saito T, Kitazawa H, Kawai Y, Itoh T. Structural analysis of new antihypertensive peptides derives from cheese whey protein by proteinase K digestion. J Dairy Sci 1998; 81: 3131–3138

DOI: 10.3168/jds.s0022-0302(98)75878-3

Google Scholar

[2] Collins, R., Peto, R., MacMahon, S., Hebert, P., Fiebach, N. H., Eberlein, K. A., et al. (1990). Blood pressure, strike, and coronary heart disease. Part 2. Lancet, 335, 827-838

DOI: 10.1016/0140-6736(90)90944-z

Google Scholar

[3] Corvol. P., Eyries. M., 2004. Peptidyl dipeptidase A: angiotensin I converting enzyme. In: Rawlings, M.D., Woessner, F.J. (Eds.), , Handbook of Proteolytic Enzymes. Academic Press, London, p.332–346.

DOI: 10.1016/b978-0-12-079611-3.50090-2

Google Scholar

[4] Erdos, E. G. (1975). Angiotensin-I converting enzyme. Circulation Research, 36, 247-255

Google Scholar

[5] Hyun CK, Shin HK. Utilization of bovine blood plasma proteins for the production of angiotensin-I-converting enzyme inhibitory peptides. Process Biochem 2000;36:65–71

DOI: 10.1016/s0032-9592(00)00176-x

Google Scholar

[6] Kim SK Choi YR, Park PJ, Choi JH, Moon SH. Screening of biofunctional peptides from cod processing wastes. J Korean Soc Agric Chem Biotechnol 2000;43:225–227

Google Scholar

[7] Kinoshita E, Yamakoshi J, Ikuchi M. Purification and identification of an angiotensin-I-converting enzyme inhibitor from soy sauce. Biosci Biotechnol Biochem 1993;57:1107–1110

DOI: 10.1271/bbb.57.1107

Google Scholar

[8] Kohama Y, Matsumoto S, Oka H, Teramoto T, Okabe M, Mimura T. Isolation of angiotensin-converting enzyme inhibitory from tuna muscle. Biochem Biophys Res Commun 1988;155:332–7

DOI: 10.1016/s0006-291x(88)81089-1

Google Scholar

[9] Koike, H., Ito, K., Miyamoto, M., & Nishino, H. (1980). Effects of long-term blockade of angiotensin I converting enzyme with captopril on hemodynamics and circulating blood volume in SHR. Hypertension, 2, 229-303

DOI: 10.1161/01.hyp.2.3.299

Google Scholar

[10] MacMahon, S., Peto, R., Cutler, J., Collins, R., Sorlie, P., Neaton, J., et al. (1990). Blood pressure, stroke, and coronary heart disease. Part I. The Lancet, 335, 765-774

DOI: 10.1016/0140-6736(90)90878-9

Google Scholar

[11] Maeno M Yamamoto N, Takano T. Identification of an antihypertensive peptide from casein hydrolysate produced by a proteinase from Lactobacillus helveticus CP790. J Dairy Sci 1996;79:1316–1321

DOI: 10.3168/jds.s0022-0302(96)76487-1

Google Scholar

[12] Matsui T, Matsufuji H, Seki E, Osajima K, Nakashima M, Osajima Y. Inhibition of angiotensin-I-converting enzyme by Bacillus licheniformis alkaline protease hydrolyzates derived from sardine muscle. Biosci Biotechnol Biochem 1993;57:922–925

DOI: 10.1271/bbb.57.922

Google Scholar

[13] Matsumura N, Fujii M, Takeda Y, Sugita K, Shimizu T. Angiotensin-Iconverting enzyme inhibitory peptides derived from bonito bowels autolysate. Biosci Biotechnol Biochem 1993;57:695–697

DOI: 10.1271/bbb.57.695

Google Scholar

[14] Miyoshi S, Ishikawa H, Kaneko Y, Fukui F, Tanaka H, Maruyama S. Structures and activity of angiotensin-converting enzyme inhibitors in an a-zein hydrolysate. Agric Biol Chem 1991;55:1313–1318

DOI: 10.1080/00021369.1991.10870760

Google Scholar

[15] N. Ehsani, S. Parkkinen, M. Nystrom, Fractionation of natural and model egg white protein solution with modified and unmodified polysulfone UF membranes, J. Membr. Sci. 123 (1997) 105-119.

DOI: 10.1016/s0376-7388(96)00207-4

Google Scholar

[16] Okamoto A, Hanagata H, Kawamura Y, Yanagida F. Antihypertensive substances in fermented soybean, natto. Plant Foods Hum Nutr 1995;47::39–47

DOI: 10.1007/bf01088165

Google Scholar

[17] Q.Y. Li, Z.F. Cui, D.S. Pepper, Fractionation of HSA and IgG by gas sparged ultrafiltration, J. Membr. Sci. 136 (1997) 181-190.

DOI: 10.1016/s0376-7388(97)00159-2

Google Scholar

[18] R. Ghosh, Fractionation of biological macromolecules using carrier phase ultrafiltration, Biotechnol. Bioeng. 74 (2001) 1-11.

DOI: 10.1002/bit.1089

Google Scholar

[19] R.H.C.M. van Eijndhoven, S. Saksena, A.L. Zydney, Protein fractionation using electrostatic interactions in membrane filtration, Biotechnol.Bioeng. 48 (1995) 406–414.

DOI: 10.1002/bit.260480413

Google Scholar

[20] S. Saksena, A.L. Zydney, Effect of solution pH and ionic strength on the separation of albumin from immunoglobulins (IgG) by selective filtration, Biotechnol. Bioeng. 43 (1994) 960-968.

DOI: 10.1002/bit.260431009

Google Scholar

[21] Suh HJ,Whang JH, Lee H. A peptide from corn gluten hydrolysate that is inhibitory toward angiotensin-I-converting enzyme. Biotechnol Lett 1999;21:1055–1058

Google Scholar

[22] Y.H. Wan, R. Ghosh, Z.F. Cui, High-resolution plasma protein fractionation using ultrafiltration, Desalination 144 (2002) 301-306.

DOI: 10.1016/s0011-9164(02)00332-6

Google Scholar