A Fast Multipole Boundary Element Method Based on Legendre Series for Three-Dimensional Potential Problems

Article Preview

Abstract:

Vectorization expressions of a Fast Multipole Boundary Element Method (FM-BEM) based on Legendre series are presented for three-dimensional (3-D) potential problems. The formulas are applied to the expression of fundamental solutions for the Boundary Element Method(BEM). Truncation errors of the multipole expansion and local expansion are deduced and analyzed. It shows that the errors can be controlled by truncation terms.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 468-471)

Pages:

426-429

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Rokhlin: J. Comput. Phys. Vol. 60 (1985), p.187

Google Scholar

[2] L. Greengard, V. Rokhlin: J. Comput. Phys. Vol. 73 (1987), p.325

Google Scholar

[3] N. Nishimura, K. Yoshida and S. Kobayashi: Eng. Anal. Bound. Elem. Vol. 23 (1999), p.97

Google Scholar

[4] K. Yoshida, N. Nishimura and S. Kobayashi: Eng. Anal. Bound. Elem. Vol. 25 (2001), p.239

Google Scholar

[5] Y. J. Liu, N. Nishimura: Eng. Anal. Bound. Elem. Vol. 30 (2006), p.371

Google Scholar

[6] S. Liang, Y. J. Liu: Comput. Mech. Vol. 39 (2007), p.681

Google Scholar

[7] H. J. Li, G. X. Shen, and D. Y. Liu: Chinese .J. Mech. Eng. Vol. 43 (2007), p.95

Google Scholar

[8] G. X. Shen, X. D. Shu and M. Li: J. Appl. Mech. ASME Vol. 72 (2005), p.962

Google Scholar

[9] Z. L. Lin, S. J. Liao: Commun Nonlinear Sci Numer Simulat Vol. 16 (2011), p.187

Google Scholar

[10] H. Cheng, L. Greengard and V. Rokhlin. J. Comput. Phys. Vol. 155 (1999), p.468

Google Scholar