Site Preference and Elastic Properties of 5d Transition Metals in Ductility YAg Alloys

Article Preview

Abstract:

First-principles supercell calculations, which are based on density functional theory, were performed to study the site preference behavior and elastic properties of 5d (Hf-Au) transition-metal elements in B2 ductility YAg alloy. It is found that all alloying elements Hf, Ta, W, Re, Os, Ir, Pt and Au occupy the Y sub-lattice. Micro-alloying transition metals W, Re, Os, Ir and Pt decrease the lattice parameters of Y8Ag8 except Hf, Ta and Au, among which Y8Ag7Hf shows the largest variance. Furthermore, the calculated elastic constants show that Hf, Ta, W, Re, Os, Pt and Au improve the ductility of YAg alloy, and Y8Ag7Hf presents the most ductility among these alloy, while Ir transforms ductile into brittle for YAg alloy. In addition, Os alloying element increases the hardness of YAg alloy.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 472-475)

Pages:

1397-1401

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.A. Gschneidner Jr, A. Russell, A.Pecharsky, and et al: Nat. Mater. Vol , 2(2003), p.587

Google Scholar

[2] Z.Zhang, A.M. Russell, S.B. Biner, and et al: Intermetallics. Vol, 13(2005), p.559

Google Scholar

[3] G.H. Cao, D.Shechtman, D.M.Wu, A.T. Becker, and et al: Acta Mater. Vol, 55 (2007), p.3765

Google Scholar

[4] A.M. Russell, Z.Zhang, T.A. Lograsso, C.C.H.Lo, and et al: Acta Mater. Vol, 52(2004), p.4033

Google Scholar

[5] T.Kim, K.T. Hong, and K.S. Lee: Intermetallics. Vol, 11(2003), p.33

Google Scholar

[6] Y. Wu, W. Hu and S. Han: Phusica B. Vol, 403(2008), p.3792

Google Scholar

[7] R.D. Field, D.F. Lahrman, and R.Darolia: Acta Mater Vol, 39(1991),p.2961

Google Scholar

[8] P.Lazar, and R.Podloucky: Phys Rev B, Vol, 73(2006),p.104114

Google Scholar

[9] G.Lresse, and J.Furhtmuller: Phys. Rev. B Vol, 54(1996) , p.11169

Google Scholar

[10] J.P. Perdew, and Y. Wang,: Phys. Rev. B Vol, 45(1992), p.13244

Google Scholar

[11] P.E. Blochl: Phys. Rev. B Vol, 50(1994) ,p.17953

Google Scholar

[12] Y.Wu, and W.Hu: Eur.Phy. J B. Vol, 60(2007), p.75.

Google Scholar

[13] J.R. Morris, Y.Ye, Y.B. Lee,and et al: Acta Mater.Vol, 52(2004), p.4849

Google Scholar

[14] S.Xie, K.A. Gschneidner Jr, and A.M. Russell: Scripta Materialia.Vol, 59(2008), p.810.

Google Scholar

[15] S.F. Pugh: Philos. Magazine. Vol, 45(1954), p.823

Google Scholar

[16] K.Chen, L.R. Zhao, J.Rodgers, and J.S. Tse: J. Phys.D: Appl. Phys. Vol, 36(2003), p.2725

Google Scholar

[17] M.H. Yoo, T.T. Akasugi, S.Hanada, and O Izumi: Mater. Trans. JIM Vol, 31(1990), p.435

Google Scholar