Simulation for Hydrogen Absorption on Single Wall Carbon Nanotubes Using the First Principle

Article Preview

Abstract:

The hydrogen storage on single wall carbon is studied by using the first principle based on density functional theory (DFT). It concludes that the adsorption of hydrogen on the bare distorted single carbon nanotubes (SWNTs) can be enhanced dramatically when the single wall carbon nanotubes are rotated along the tubs axis. On the other hand, it suggests that the hydrogen storage capacity of SWNTs depend on the deformation angles.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 472-475)

Pages:

1787-1791

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.Iijima:Nature, 354 (1991),pp.56-57.

Google Scholar

[2] G.Mpourmpakis, E. Tylianakis and G.Froudakis:J. Nanosci. Nanotechnol, 6 (2006), pp.87-90.

Google Scholar

[3] Eduardo Rangel, Gregorio Ruiz-Chavarria, L. F.Magana,J. S.Arellano: Physics Letters A, 373 (2009), pp.2588-2591.

DOI: 10.1016/j.physleta.2009.05.018

Google Scholar

[4] M.Sankaran,B.Viswanathan, S. M. Srinivasa: International Journal of Hydrogen Energy, 33 (2008), pp.393-403.

Google Scholar

[5] LeelaMohana Reddy A, S.Ramaprabhu:International Journal of Hydrogen Energy, 32(2007), pp.3998-4004.

Google Scholar

[6] M. Sankaran,B.Viswanathan: Carbon, 45 (2007), 1628-1635.

Google Scholar

[7] A. G.Lipson, B. F.Lyakhov, E. I.Saunin, A. Y.Tsivadze: Phys RevB, 77 (2008),p.081405(R).

Google Scholar

[8] S. P.Chan, G.Chen, X. G.Gong, et al: Phys RevLett, 87(2001),205502.

Google Scholar

[9] Y.Yürüm, A.Taralp, V.T. Nejat:International Journal of Hydrogen Energy, 34:(2009), pp.3784-3798.

Google Scholar

[10] D. P.Cao,W. C.Wang: International Journal of Hydrogen Energy, 32(2007),1939-1942.

Google Scholar

[11] BauschlicherCharles W, Jr.: NanoLett, 1 (2001),pp.223-226.

Google Scholar

[12] C. W.Bauschlicher, C. R.So: NanoLett, 2 (2002),pp.337-341.

Google Scholar

[13] Y.Okamoto, Y.Miyamoto: J PhysChem B, 105 (2001),pp.3470-3474.

Google Scholar

[14] S.Dag, Y.Ozturk, S.Ciraci, et al:PhysRev B, 72 (2005),p.155404.

Google Scholar

[15] A. W. C. van den Berg, S. T. Bromley, J. C. Wojdel, et al: Phys. Rev. B, 72 (2005), p.155428.

Google Scholar

[16] J. S. Arellano, L. M. Molina, A. Rubio, et al: J. Chem. Phys. 117(2002), p.2281.

Google Scholar

[17] P. Lazic, Ž. Crljen, R. Brako, and B. Gumhalter: Phys. Rev. B 72(2005), p.245407.

Google Scholar

[18] A. J. Du and S. C. Smith: Nanotechnology, 16 (2005), p.2118.

Google Scholar

[19] S. Rigamonti and C. R. Proetto: Phys. Rev. B, 73 (2006), p.235319.

Google Scholar

[20] A. K.Rappe, C. J.Casewit, K. S.Colwell, et al.: J Am ChemSoc,114 (1992), pp.10024-10035.

Google Scholar

[21] N.Yao,Lordi V: J ApplPhys, 84 (1998), pp.1939-1943.

Google Scholar

[22] B.Delley: J ChemPhys,(1990),p.92508.

Google Scholar

[23] B.Delley: J ChemPhys,113 (2000), pp.7756-7764.

Google Scholar

[24] J. P.Perdew, Y.Wang: Phys Rev B., 45 (1992), pp.13244-13249.

Google Scholar

[25] E.Rangel, G.Ruiz-Chavarria, L. F.Magana,et al: Physics Letters A, 373 (2009), pp.2588-2591.

Google Scholar

[26] D. Henwood and J. David Carey: Phys Rev B, 2007, 75: 245413.

Google Scholar

[27] A. Q. Chen, Q. Y. Shao, Z. C.Lin: Sci China Ser G., 52 (2009), pp.1139-1145

Google Scholar