[1]
X.H. Zhong, Y.M. Wang, Z.H. Xu, Y.F. Zhang, J.F. Zhang, X.Q. Cao, Hot-corrosion behaviors of overlay-clad yttria-stabilized zirconia coatings in contact with vanadate-sulfate salts, J. Eur. Ceram. Soc. 30 (2010) 1401-1408.
DOI: 10.1016/j.jeurceramsoc.2009.10.017
Google Scholar
[2]
G.M. Ingo, T.D. Caro, Chemical aspects of plasma spraying of zirconia-based thermal barrier coatings, Acta Mater. 56 (2008) 5177-5187.
DOI: 10.1016/j.actamat.2008.07.006
Google Scholar
[3]
M. Zhang, A.H. Heuer, Spatially varying microhardness in a platinum-modified nickel aluminide bond coat in a thermal barrier coating system, Scripta Mater. 54 (2006) 1265- 1269.
DOI: 10.1016/j.scriptamat.2005.12.034
Google Scholar
[4]
S. Ahmaniemi, J. Tuominen, M. Vippola, P. Vuoristo, T. Mantyla, F. Cernuschi, C. Gualco, A. Bonadei, R.D. Maggio, Characterization of modified thick thermal barrier coatings, J. Therm. Spray. Technol. 13(3) (2004) 361-369.
DOI: 10.1361/10599630420371
Google Scholar
[5]
Y. Wang, G. Sayre, Commercial thermal barrier coatings with a double-layer bond coat on turbine vanes and the process repeatability, Surf. Coat. Technol. 203 (2009) 2186-2192.
DOI: 10.1016/j.surfcoat.2009.02.007
Google Scholar
[6]
J. Zhang, X. Zhong, Y. Cheng, Y.Wang, Z. Xu, X. Chen, H. Ma, Y. Zhao, X. Cao, Thermal-shock resistance of LnMgAl11O19 (Ln = La, Nd, Sm, Gd) with magnetoplumbite structure, J. Alloy. Compd. 482 (2009) 376-381.
DOI: 10.1016/j.jallcom.2009.04.025
Google Scholar
[7]
M. Saremi, A. Afrasiabi, A. Kobayashi, Bond coat oxidation and hot corrosion behavior of plasma sprayed YSZ coting on Ni superalloy, T. JWRI 36 (2007) 41-45.
Google Scholar
[8]
M.F. Morks, C.C. Berndt, Y. Durandet, M. Brandt, J. Wang, Microscopic observation of laser glazed yttria-stabilized zirconia coatings, Appl. Surf. Sci. 256 (2010) 6213-6218.
DOI: 10.1016/j.apsusc.2010.03.143
Google Scholar
[9]
H. Jamali, R. Ahmadi Pidani, R. Mozafarinia, R. Shojarazavi, H. Zamani, Investigation and determine of hot corrosion mechanism of plasma sprayed YSZ thermal barrier coatings exposed to Na2SO4 + V2O5 molten salt, 12ht National Corrosion Congress, Tehran, Iran, Amirkabir University of Technology, 2011.
DOI: 10.1016/j.ceramint.2012.05.047
Google Scholar
[10]
A.N. Khan, J. Lu, Manipulation of air plasma spraying parameters for the production of ceramic coatings, J. Mater. Process. Tech. 209 (2009) 2508-2514.
DOI: 10.1016/j.jmatprotec.2008.05.045
Google Scholar
[11]
A.N. Khan, J. Lu, Behavior of air plasma sprayed thermal barrier coatings, subject to intense thermal cycling, Surf. Coat. Technol. 166 (2003) 37-43.
DOI: 10.1016/s0257-8972(02)00740-5
Google Scholar
[12]
J. Wu, H. Guo, L. Zhou, L. Wang, S.k. Gong, Microstructure and thermal properties of plasma sprayed thermal barrier coatings from nanostructured YSZ, J. Therm. Spray. Technol. 19(6) (2010) 1186-1194.
DOI: 10.1007/s11666-010-9535-7
Google Scholar
[13]
C. Giolli, A. Scrivani, G. Rizzi, F. Borgioli, G. Bolelli, L. Lusvarghi, Failure mechanism for thermal fatigue of thermal barrier coating systems, J. Therm. Spray. Technol. 18(2) (2009) 223-230.
DOI: 10.1007/s11666-009-9307-4
Google Scholar
[14]
P.C. Tsai, J.H. Lee, C.L. Chang, Improving the erosion resistance of plasma-sprayed zirconia thermal barrier coatings by laser glazing, Surf. Coat. Technol. 202 (2007) 719-724.
DOI: 10.1016/j.surfcoat.2007.07.005
Google Scholar
[15]
Y. Liu, C. Persson, J. Wigren, Experimental and numerical life prediction of thermally cycled thermal barrier coatings, J. Therm. Spray. Technol. 13(3) (2004) 415-424
DOI: 10.1361/10599630420399
Google Scholar
[16]
Y. Bai, Z.H. Han, H.Q. Li, C. Xu, Y.L. Xu, Z. Wang, C.H. Ding, J.F. Yang, High performance nanostructured ZrO2 based thermal barrier coatings deposited by high efficiency supersonic plasma spraying, Appl. Surf. Sci. 257 (2011) 7210-7216.
DOI: 10.1016/j.apsusc.2011.03.092
Google Scholar
[17]
R.S. Lima, A. Kucuk, C.C. Berndt, Integrity of nanostructured partially stabilized zirconia after plasma spray processing, Mater. Sci. Eng. A 313 (2001) 75-82.
DOI: 10.1016/s0921-5093(01)01146-7
Google Scholar
[18]
S. Bose, High Temperature Coatings, Elsevier Science & Technology Books, USA, 2007.
Google Scholar
[19]
Z. Zhang, J. Kameda, S. Sakurai, M. Sato, Through-thickness dependence of in-plane cracking behavior in plasma-sprayed thermal barrier coatings, Metall. Mater. Trans. A 36 (2005) 1841-1854.
DOI: 10.1007/s11661-005-0048-9
Google Scholar
[20]
T.S. Hille, A.S.J. Suiker, S. Turteltaub, Microcrack nucleation in thermal barrier coating systems, Eng. Fract. Mech. 76 (2009) 813-825.
DOI: 10.1016/j.engfracmech.2008.12.010
Google Scholar