Investigation of Thermal Shock Behavior of Plasma-Sprayed NiCoCrAlY/YSZ Thermal Barrier Coatings

Article Preview

Abstract:

ZrO2-8wt.%Y2O3 (8YSZ) thermal barrier coatings (TBCs) were deposited by atmospheric plasma spraying (APS) on NiCoCrAlY-coated Inconel 738LC substrates. The thermal shock behavior was investigated by quenching the samples in water with temperature of 20-25°C from 950°C. To study of failure mechanism results from thermal cycling, microstructural evaluation using scanning electron microscope (SEM), elemental analysis using energy dispersive spectroscopy (EDS) and phasic analysis using x-ray diffractometry (XRD) were done. The results revealed that failure of the TBC system was due to the spallation of ceramic top coat. Thermal mismatch stress was the major factor of TBC failure in thermal shock test.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 472-475)

Pages:

246-250

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X.H. Zhong, Y.M. Wang, Z.H. Xu, Y.F. Zhang, J.F. Zhang, X.Q. Cao, Hot-corrosion behaviors of overlay-clad yttria-stabilized zirconia coatings in contact with vanadate-sulfate salts, J. Eur. Ceram. Soc. 30 (2010) 1401-1408.

DOI: 10.1016/j.jeurceramsoc.2009.10.017

Google Scholar

[2] G.M. Ingo, T.D. Caro, Chemical aspects of plasma spraying of zirconia-based thermal barrier coatings, Acta Mater. 56 (2008) 5177-5187.

DOI: 10.1016/j.actamat.2008.07.006

Google Scholar

[3] M. Zhang, A.H. Heuer, Spatially varying microhardness in a platinum-modified nickel aluminide bond coat in a thermal barrier coating system, Scripta Mater. 54 (2006) 1265- 1269.

DOI: 10.1016/j.scriptamat.2005.12.034

Google Scholar

[4] S. Ahmaniemi, J. Tuominen, M. Vippola, P. Vuoristo, T. Mantyla, F. Cernuschi, C. Gualco, A. Bonadei, R.D. Maggio, Characterization of modified thick thermal barrier coatings, J. Therm. Spray. Technol. 13(3) (2004) 361-369.

DOI: 10.1361/10599630420371

Google Scholar

[5] Y. Wang, G. Sayre, Commercial thermal barrier coatings with a double-layer bond coat on turbine vanes and the process repeatability, Surf. Coat. Technol. 203 (2009) 2186-2192.

DOI: 10.1016/j.surfcoat.2009.02.007

Google Scholar

[6] J. Zhang, X. Zhong, Y. Cheng, Y.Wang, Z. Xu, X. Chen, H. Ma, Y. Zhao, X. Cao, Thermal-shock resistance of LnMgAl11O19 (Ln = La, Nd, Sm, Gd) with magnetoplumbite structure, J. Alloy. Compd. 482 (2009) 376-381.

DOI: 10.1016/j.jallcom.2009.04.025

Google Scholar

[7] M. Saremi, A. Afrasiabi, A. Kobayashi, Bond coat oxidation and hot corrosion behavior of plasma sprayed YSZ coting on Ni superalloy, T. JWRI 36 (2007) 41-45.

Google Scholar

[8] M.F. Morks, C.C. Berndt, Y. Durandet, M. Brandt, J. Wang, Microscopic observation of laser glazed yttria-stabilized zirconia coatings, Appl. Surf. Sci. 256 (2010) 6213-6218.

DOI: 10.1016/j.apsusc.2010.03.143

Google Scholar

[9] H. Jamali, R. Ahmadi Pidani, R. Mozafarinia, R. Shojarazavi, H. Zamani, Investigation and determine of hot corrosion mechanism of plasma sprayed YSZ thermal barrier coatings exposed to Na2SO4 + V2O5 molten salt, 12ht National Corrosion Congress, Tehran, Iran, Amirkabir University of Technology, 2011.

DOI: 10.1016/j.ceramint.2012.05.047

Google Scholar

[10] A.N. Khan, J. Lu, Manipulation of air plasma spraying parameters for the production of ceramic coatings, J. Mater. Process. Tech. 209 (2009) 2508-2514.

DOI: 10.1016/j.jmatprotec.2008.05.045

Google Scholar

[11] A.N. Khan, J. Lu, Behavior of air plasma sprayed thermal barrier coatings, subject to intense thermal cycling, Surf. Coat. Technol. 166 (2003) 37-43.

DOI: 10.1016/s0257-8972(02)00740-5

Google Scholar

[12] J. Wu, H. Guo, L. Zhou, L. Wang, S.k. Gong, Microstructure and thermal properties of plasma sprayed thermal barrier coatings from nanostructured YSZ, J. Therm. Spray. Technol. 19(6) (2010) 1186-1194.

DOI: 10.1007/s11666-010-9535-7

Google Scholar

[13] C. Giolli, A. Scrivani, G. Rizzi, F. Borgioli, G. Bolelli, L. Lusvarghi, Failure mechanism for thermal fatigue of thermal barrier coating systems, J. Therm. Spray. Technol. 18(2) (2009) 223-230.

DOI: 10.1007/s11666-009-9307-4

Google Scholar

[14] P.C. Tsai, J.H. Lee, C.L. Chang, Improving the erosion resistance of plasma-sprayed zirconia thermal barrier coatings by laser glazing, Surf. Coat. Technol. 202 (2007) 719-724.

DOI: 10.1016/j.surfcoat.2007.07.005

Google Scholar

[15] Y. Liu, C. Persson, J. Wigren, Experimental and numerical life prediction of thermally cycled thermal barrier coatings, J. Therm. Spray. Technol. 13(3) (2004) 415-424

DOI: 10.1361/10599630420399

Google Scholar

[16] Y. Bai, Z.H. Han, H.Q. Li, C. Xu, Y.L. Xu, Z. Wang, C.H. Ding, J.F. Yang, High performance nanostructured ZrO2 based thermal barrier coatings deposited by high efficiency supersonic plasma spraying, Appl. Surf. Sci. 257 (2011) 7210-7216.

DOI: 10.1016/j.apsusc.2011.03.092

Google Scholar

[17] R.S. Lima, A. Kucuk, C.C. Berndt, Integrity of nanostructured partially stabilized zirconia after plasma spray processing, Mater. Sci. Eng. A 313 (2001) 75-82.

DOI: 10.1016/s0921-5093(01)01146-7

Google Scholar

[18] S. Bose, High Temperature Coatings, Elsevier Science & Technology Books, USA, 2007.

Google Scholar

[19] Z. Zhang, J. Kameda, S. Sakurai, M. Sato, Through-thickness dependence of in-plane cracking behavior in plasma-sprayed thermal barrier coatings, Metall. Mater. Trans. A 36 (2005) 1841-1854.

DOI: 10.1007/s11661-005-0048-9

Google Scholar

[20] T.S. Hille, A.S.J. Suiker, S. Turteltaub, Microcrack nucleation in thermal barrier coating systems, Eng. Fract. Mech. 76 (2009) 813-825.

DOI: 10.1016/j.engfracmech.2008.12.010

Google Scholar