Investigation of Thermal Shock Behavior of Plasma-Sprayed NiCoCrAlY/YSZ Thermal Barrier Coatings

Abstract:

Article Preview

ZrO2-8wt.%Y2O3 (8YSZ) thermal barrier coatings (TBCs) were deposited by atmospheric plasma spraying (APS) on NiCoCrAlY-coated Inconel 738LC substrates. The thermal shock behavior was investigated by quenching the samples in water with temperature of 20-25°C from 950°C. To study of failure mechanism results from thermal cycling, microstructural evaluation using scanning electron microscope (SEM), elemental analysis using energy dispersive spectroscopy (EDS) and phasic analysis using x-ray diffractometry (XRD) were done. The results revealed that failure of the TBC system was due to the spallation of ceramic top coat. Thermal mismatch stress was the major factor of TBC failure in thermal shock test.

Info:

Periodical:

Advanced Materials Research (Volumes 472-475)

Edited by:

Wenzhe Chen, Xipeng Xu, Pinqiang Dai, Yonglu Chen and Zhengyi Jiang

Pages:

246-250

Citation:

H. Jamali et al., "Investigation of Thermal Shock Behavior of Plasma-Sprayed NiCoCrAlY/YSZ Thermal Barrier Coatings", Advanced Materials Research, Vols. 472-475, pp. 246-250, 2012

Online since:

February 2012

Export:

Price:

$38.00

[1] X.H. Zhong, Y.M. Wang, Z.H. Xu, Y.F. Zhang, J.F. Zhang, X.Q. Cao, Hot-corrosion behaviors of overlay-clad yttria-stabilized zirconia coatings in contact with vanadate-sulfate salts, J. Eur. Ceram. Soc. 30 (2010) 1401-1408.

DOI: https://doi.org/10.1016/j.jeurceramsoc.2009.10.017

[2] G.M. Ingo, T.D. Caro, Chemical aspects of plasma spraying of zirconia-based thermal barrier coatings, Acta Mater. 56 (2008) 5177-5187.

DOI: https://doi.org/10.1016/j.actamat.2008.07.006

[3] M. Zhang, A.H. Heuer, Spatially varying microhardness in a platinum-modified nickel aluminide bond coat in a thermal barrier coating system, Scripta Mater. 54 (2006) 1265- 1269.

DOI: https://doi.org/10.1016/j.scriptamat.2005.12.034

[4] S. Ahmaniemi, J. Tuominen, M. Vippola, P. Vuoristo, T. Mantyla, F. Cernuschi, C. Gualco, A. Bonadei, R.D. Maggio, Characterization of modified thick thermal barrier coatings, J. Therm. Spray. Technol. 13(3) (2004) 361-369.

DOI: https://doi.org/10.1361/10599630420371

[5] Y. Wang, G. Sayre, Commercial thermal barrier coatings with a double-layer bond coat on turbine vanes and the process repeatability, Surf. Coat. Technol. 203 (2009) 2186-2192.

DOI: https://doi.org/10.1016/j.surfcoat.2009.02.007

[6] J. Zhang, X. Zhong, Y. Cheng, Y. Wang, Z. Xu, X. Chen, H. Ma, Y. Zhao, X. Cao, Thermal-shock resistance of LnMgAl11O19 (Ln = La, Nd, Sm, Gd) with magnetoplumbite structure, J. Alloy. Compd. 482 (2009) 376-381.

DOI: https://doi.org/10.1016/j.jallcom.2009.04.025

[7] M. Saremi, A. Afrasiabi, A. Kobayashi, Bond coat oxidation and hot corrosion behavior of plasma sprayed YSZ coting on Ni superalloy, T. JWRI 36 (2007) 41-45.

[8] M.F. Morks, C.C. Berndt, Y. Durandet, M. Brandt, J. Wang, Microscopic observation of laser glazed yttria-stabilized zirconia coatings, Appl. Surf. Sci. 256 (2010) 6213-6218.

DOI: https://doi.org/10.1016/j.apsusc.2010.03.143

[9] H. Jamali, R. Ahmadi Pidani, R. Mozafarinia, R. Shojarazavi, H. Zamani, Investigation and determine of hot corrosion mechanism of plasma sprayed YSZ thermal barrier coatings exposed to Na2SO4‏ + V2O5 molten salt, 12ht National Corrosion Congress, Tehran, Iran, Amirkabir University of Technology, (2011).

DOI: https://doi.org/10.1016/j.ceramint.2012.05.047

[10] A.N. Khan, J. Lu, Manipulation of air plasma spraying parameters for the production of ceramic coatings, J. Mater. Process. Tech. 209 (2009) 2508-2514.

DOI: https://doi.org/10.1016/j.jmatprotec.2008.05.045

[11] A.N. Khan, J. Lu, Behavior of air plasma sprayed thermal barrier coatings, subject to intense thermal cycling, Surf. Coat. Technol. 166 (2003) 37-43.

DOI: https://doi.org/10.1016/s0257-8972(02)00740-5

[12] J. Wu, H. Guo, L. Zhou, L. Wang, S. k. Gong, Microstructure and thermal properties of plasma sprayed thermal barrier coatings from nanostructured YSZ, J. Therm. Spray. Technol. 19(6) (2010) 1186-1194.

DOI: https://doi.org/10.1007/s11666-010-9535-7

[13] C. Giolli, A. Scrivani, G. Rizzi, F. Borgioli, G. Bolelli, L. Lusvarghi, Failure mechanism for thermal fatigue of thermal barrier coating systems, J. Therm. Spray. Technol. 18(2) (2009) 223-230.

DOI: https://doi.org/10.1007/s11666-009-9307-4

[14] P.C. Tsai, J.H. Lee, C.L. Chang, Improving the erosion resistance of plasma-sprayed zirconia thermal barrier coatings by laser glazing, Surf. Coat. Technol. 202 (2007) 719-724.

DOI: https://doi.org/10.1016/j.surfcoat.2007.07.005

[15] Y. Liu, C. Persson, J. Wigren, Experimental and numerical life prediction of thermally cycled thermal barrier coatings, J. Therm. Spray. Technol. 13(3) (2004) 415-424.

DOI: https://doi.org/10.1361/10599630420399

[16] Y. Bai, Z.H. Han, H.Q. Li, C. Xu, Y.L. Xu, Z. Wang, C.H. Ding, J.F. Yang, High performance nanostructured ZrO2 based thermal barrier coatings deposited by high efficiency supersonic plasma spraying, Appl. Surf. Sci. 257 (2011) 7210-7216.

DOI: https://doi.org/10.1016/j.apsusc.2011.03.092

[17] R.S. Lima, A. Kucuk, C.C. Berndt, Integrity of nanostructured partially stabilized zirconia after plasma spray processing, Mater. Sci. Eng. A 313 (2001) 75-82.

DOI: https://doi.org/10.1016/s0921-5093(01)01146-7

[18] S. Bose, High Temperature Coatings, Elsevier Science & Technology Books, USA, (2007).

[19] Z. Zhang, J. Kameda, S. Sakurai, M. Sato, Through-thickness dependence of in-plane cracking behavior in plasma-sprayed thermal barrier coatings, Metall. Mater. Trans. A 36 (2005) 1841-1854.

DOI: https://doi.org/10.1007/s11661-005-0048-9

[20] T.S. Hille, A.S.J. Suiker, S. Turteltaub, Microcrack nucleation in thermal barrier coating systems, Eng. Fract. Mech. 76 (2009) 813-825.

DOI: https://doi.org/10.1016/j.engfracmech.2008.12.010