Characterization and Preparation of Well-Dispersed TiO2 Nanoparticles by Ultrasonic Microemulsion Method

Article Preview

Abstract:

Well-dispersed TiO2 nanoparticles were successfully prepared ultrasonic microemulsion method in this paper. The morphology and microstructure of the products were characterized by the laser particle size analyzer, Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometer (XRD), differential scanning calorimeter (DSC) and transmission electron microscope (TEM). It was found that the TiO2 nanoparticles obtained from this method have well-proportioned size distributions; the surfactant (CTAB) molecule was adsorbed on the surface of TiO2 nanoparticles precursor, which is favorable for the dispersion of TiO2 nanoparticles; the TiO2 nanoparticles calcined was a crystal of the cubic structure. In addition, the mechanism on the formation of the TiO2 nanoparticles was also proposed in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 476-478)

Pages:

1806-1810

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Chen and L.Gao: J. Colloid Interface Sci. Vol. 279 (2004), p.137

Google Scholar

[2] J.Y. Shi and H. Verweij: Langmuir Vol. 21 (2005), p.5570

Google Scholar

[3] S.M. Liu, S. Sato and K. Kimura: Langmuir Vol. 21 (2005), p.6324

Google Scholar

[4] A.S. Bao, C.Y. Tao and H. Yang: J. Mater. Sci.- Mater. Electron. Vol. 19 (2008), p.476

Google Scholar

[5] H. Liang, Y. Zhang, Y. Liu: J. Rare Earth. Vol. 27 (2009), p.425

Google Scholar

[6] B. O'Regan and M. Gratzel: Nature Vol. 353 (1991), p.737

Google Scholar

[7] Y.B. Xie, X.W. Shen and C.W. Yuan: Chin. J. Chem. Eng. Vol. 11 (2003), p.27

Google Scholar

[8] T. Uchino, H.M. Tokunaga and H. Utsumi: Toxicol. in Vitro. Vol. 16 (2002), p.629

Google Scholar

[9] K.A. Karraker and C.J. Radke: Adv. Colloid Interface Sci. Vol. 96 (2002), p.231

Google Scholar

[10] R.X. Li, S. Yabe and M. Yamashita: Solid State Ionics Vol. 151 (2002), p.235

Google Scholar

[11] Y. Gao and S.A. Elder: Mater. Lett. Vol. 44 (2000), p.228

Google Scholar

[12] Y. Kotani, A. Matsuda, M. Tatsumisago et a1.: J. Sol-Gel Sci. Technol. Vol. 19 (2000), p.585

Google Scholar

[13] G.M. Ingol, C. Riccucci, G. Bultrini et a1.: J. Therm. Anal. Calorim. Vol. 66 (2001), p.37

Google Scholar

[14] J.H. Lee, S.Y. Choi, C.E. Kim et a1.: J. Mater. Sci. Vol. 32 (1997), p.3577

Google Scholar

[15] M.S. Lee, E.J.D. Le, S.S. Hong et a1.: J. Ind. Eng. Chem. Vol. 11 (2005), p.495

Google Scholar

[16] A.A. Ismail, I.A. Ibrahim and M.S. Ahmed: J. Photoch. Photob. A. Vol. 163 (2004), p.445

Google Scholar

[17] S. Yoda, K. Ohtake and Y. Takebayashi: J. Sol-Gel Sci. Technol. Vol. 19 (2000), p.719

Google Scholar

[18] V. Chhabra, V. Pillai et a1.: Langmuir, Vol. 11 (1995), p.3307

Google Scholar