Preparation of Porous Silicon and Effect of Gettering on the Resistivity

Article Preview

Abstract:

The porous silicon layer was fabricated by electrochemical etching process using an aqueous HF-based electrolyte. The characterizations of porous silicon layer were investigated by Emission-type scanning electron microscope (SEM), Raman spectra and X-ray diffraction (XRD). With the current density increasing, the pore diameter and density become much bigger. This result also was confirmed by Raman spectra and XRD result of samples, which revealed the decreasing of grain size of silicon. The resistivity of crystalline silicon increased when the porous layer was removed after heat treatment at 850°C for 2.5h, which should be attributed to the gettering process of porous silicon.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 476-478)

Pages:

1794-1797

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Uhlir A: Bell Syst.Tech.,1956, 35,pp.333-347

Google Scholar

[2] D. R. Turner: Electrochem. Soc.10,1958,p.402

Google Scholar

[3] P.N. Vinod and M.Lal.: Mater. Sci.,Mater. Electron,2005,16,1

Google Scholar

[4] L.T. Canham: Appl. Phys. Lett,1990,57,p.1046

Google Scholar

[5] R.C. Anderson R.S. Muller C.W. Tobias: Sens. Actuator A: Phys,1990,23,p.835

Google Scholar

[6] C Lévy-Cléments,S. Bastide: Zeitschrift für Physikalische Chemie Bd,1999,212,p.123

Google Scholar

[7] T.E. Bell P.T.J. Gennissen,D. DeMunter,M. Kuhl: Micromech. Microeng,1996,6,p.361

Google Scholar

[8] W.Jooss,G.Hahn,P.Fath,G.Willeke,E.Bucher in: Proceedings of the Second World Conference on Photovoltaic Solar Energy Conversion,Vienna,Austria,1998,p.689

Google Scholar

[9] S.M. Joshi, U.M. Gosele, T.Y. Tan, in: S. Ashok, J. Chavalliar, I.Akasaki, N.M. Johnson, B.L. Sopori (Eds.), Defect and Impurity Engineered Semiconductors and Devices, vol. 378, Materials Research Society, CA, USA, 1995, p.279.

Google Scholar

[10] P.S. Plekhanov, M.D. Negoita, T.Y. Tan: Appl. Phys. 90 (2001),p.5388.

Google Scholar

[11] E.Spiecker,M. Seibt,W. Schroter: Phys. Rev. B.,1997,55 (15),p.9577

Google Scholar

[12] S.M. Joshi U.M. Gosele T.Y. Tan: Appl. Phys. Lett.,1995,77(8),p.3858

Google Scholar

[13] N.Gayhenquet,S.Martinuzzi in: Proceedings of the Second World Conference on Photovoltaic Solar Energy Conversion, Vienna, Austria,1998,p.1599

Google Scholar

[14] F. Ferrazza, Solid State Phenom. 51–56 (1996), p.449.

Google Scholar

[15] V.G. Popov, Semicond. Phys. Quantum Electron. Optoelectron. 3(2000),p.479.

Google Scholar

[16] S.M. Joshi, U.M. Gosele, T.Y. Tan: Sol. Energy Mater. Sol. Cells 70(2001), p.231.

Google Scholar

[17] A.Elmoussaoui, A. Luque, in: Proceedings of the Second World Conference on Photovoltaic Solar Energy Conversion, Vienna,Austria, 1998, p.1705.

Google Scholar

[18] N. Khedher, M. Hajji, M. Bouaicha, M.F. Boujmil, H. Ezzaouia, B. Bessais: R. Bennaceur,Solid State Comm,2002,123,p.7

Google Scholar

[19] W.Dimassi, M.Bouaicha, M.Saadoun, B.Bessais, H.Ezzaouia and R.Bennaceur: Nucl.Inst. Meth,2002,B186,p.441

Google Scholar

[20] Y.S. Tsuo,P.Menna J.R. Pitts K.R. Jantzen S.E. Asher M.M.Al-Jassim T.F. Ciszek in: Proceedings of the 25th Photovoltaic Specialist ConferenceWashington D.C,1996,p.461

DOI: 10.1109/pvsc.1996.564043

Google Scholar

[21] Y.S. Tsuo, J.R. Pitts, M.D. Landry, P. Menna, C.E. Bingham, A.Lewandowski, T.F. Ciszek: Sol. Energy Mater. Sol. Cells,1996, p.41–42

DOI: 10.1016/0927-0248(95)00099-2

Google Scholar

[22] P.Menna Y.S. Tsuo M.M.Al-Jassim in:Proceedings of the Second World Conference on Photovoltaic Solar Energy Conversion6–10 July 1998,Vienna,Austria,1998,p.1232

Google Scholar