Rheological Behaviors of Polyacrylonitrile Melt Using Ionic Liquids as a Plasticizer

Article Preview

Abstract:

The rheological behaviors of polyacrylonitrile/ionic liquids (PAN/ILs) melt were investigated to determine the general processing parameters and offer an important theoretical foundation of plasticized melt spinning. A step was carried out to decide the accurate temperature through the temperature sweep and time sweeps. The impacts of the concentration and temperature on the modulus of PAN/ILs samples were studied by dynamic sweeps. The three-parameter Carreau viscosity model was used to predict the zero-shear viscosity from the apparent viscosity data. The PAN/ILs melt showed shear-thinning behaviors. The melt with higher PAN concentration was found to be more sensitive to the temperature. However the structural viscosity index of the melt first decreased and then increased with the increase of temperature.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 476-478)

Pages:

2151-2157

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.J. Clarke: Des. Eng. Vol. 25 (1971), pp.111-115

Google Scholar

[2] C.D. Coxe, U.S. Patent 2,585,444 (1952)

Google Scholar

[3] H. Porosoff, U.S. Patent 4,163,770 (1979)

Google Scholar

[4] P. Bajaj, M. Goyal and R.B. Chavan: Polym. Gels. Netw. Vol. 3 (1995), pp.221-239

Google Scholar

[5] V.A. Bhanu, P. Rangarajan, K. Wiles, M. Bortner, M. Sankarpandian, D. Godshall: Polymer. Vol. 43 (2002), pp.4841-4850

DOI: 10.1016/s0032-3861(02)00330-0

Google Scholar

[6] D. Godshall, P. Rangarajan, D.G. Baird, G.L. Wilkes, V.A. Bhanu and J.E. McGrath: Polymer. Vol. 44 (2003), pp.4221-4228

DOI: 10.1016/s0032-3861(03)00369-0

Google Scholar

[7] P. Rangarajan, J. Yang, V. Bhanu, D. Godshall, J. McGrath and G. Wilkes: J. Appl. Polym. Sci. Vol. 85 (2002), pp.69-83

Google Scholar

[8] G.M. Kavanagh and S.B. Ross-Murphy: Prog. Polym. Sci. Vol. 23 (1998), pp.533-562

Google Scholar

[9] E. Clavero and J. Rodriguez: J. Mol. Liq. Vol. 163 (2011), pp.64-69

Google Scholar

[10] L.A. Aslanov: J. Mol. Liq. Vol. 162 (2011), pp.101-104

Google Scholar

[11] J. Lu and F. Yan, J. Texter: Prog. Polym. Sci. Vol. 34 (2009), pp.431-448

Google Scholar

[12] K. Przemyslaw: Prog. Polym. Sci. Vol. 29 (2004), pp.3-12

Google Scholar

[13] R.D. Rogers and K.R. Seddon: Science. Vol. 302 (2003), pp.792-793

Google Scholar

[14] Y. Zeng, Y. Zhang and H. Wang: Adv. Rheol. Appl.Vol. 1 (2005), pp.500-503

Google Scholar

[15] A.K. Gupta, D.K. Paliwal and P. Bajaj: J. Macromol. Sci. Rev. Macromol. Chem. Phys. Vol. C31 (1991), pp.1-89

Google Scholar

[16] P. Rangarajan, V.A. Bhanu, D. Godshall, G.L. Wilkes, J.E. McGrath and D.G. Baird: Polymer. Vol. 43 (2002), pp.2699-2709

DOI: 10.1016/s0032-3861(02)00077-0

Google Scholar

[17] T. Yang, Y.Y. Yao, Y. Lin, B. Wang, A.J. Niu and D.C. Wu: Iran. Polym. J. Vol. 19 (2010), pp.843-452

Google Scholar

[18] X. Chen, Y.M. Zhang, L.Y. Cheng and H.P. Wang: J. Polym. Environ. Vol. 17 (2009), pp.273-279

Google Scholar

[19] S.A. Zhang, F.X. Li and J.Y. Yu: Cellul. Chem. Technol. Vol. 45 (2011), pp.313-320

Google Scholar