The Study on the Reverse Atom Transfer Radical Polymerization of MMA Catalyzed by Acetylacetonate Cobolt(II) Complex Supported by Ionic Liquid

Article Preview

Abstract:

An ionic liquid supported catalytic system, chloromethylimidazole acetylacetonate Cobolt(Ⅱ) was successfully used in the RATRP of methyl methacrylate. The chemical structure of obtained PMMA was confirmed by FT-IR and 1H NMR. The polymerization process in the presence of ionic liquid was thoroughly investigated. The results revealed that this kind of initiator and catalyst system could promote RATRP of MMA with the desired characteristics, and the RATRP proceeded in a controlled manner as evidenced by kinetic studies.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 476-478)

Pages:

2188-2192

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 1999;99:2071–84.

DOI: 10.1021/cr980032t

Google Scholar

[2] Dupont J, de Souza RF, Suarez PAZ. Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev 2002;102:3667–92.

DOI: 10.1021/cr010338r

Google Scholar

[3] Parvulescu VI, Hardacre C. Catalysis in ionic liquids. Chem Rev 2007;107:2615–65.

Google Scholar

[4] van Rantwijk F, Sheldon RA. Biocatalysis in ionic liquids. Chem Rev 2007;107:2757–85.

DOI: 10.1021/cr050946x

Google Scholar

[5] Wasserscheid P, Keim W. Ionic liquids—New "solutions" for transition metal catalysis. Angew Chem Int Ed 2000;39:3772–89.

DOI: 10.1002/1521-3773(20001103)39:21<3772::aid-anie3772>3.0.co;2-5

Google Scholar

[6] Ionic liquids: industrial applications for green chemistry.Rodgers R, Seddon K, editors. ACS symposium series 818. Washington, DC: American Chemical Society; 2002.

Google Scholar

[7] Wang, J. S.; Matyjaszewski, K. Macromolecules 1995, 28, 7572.

Google Scholar

[8] Xia, J.; Matyjaszewski, K. Macromolecules 1997, 30, 7692.

Google Scholar

[9] Xia, J. H.; Matyjaszewski, K. Macromolecules 1999, 32, 5199.

Google Scholar

[10] Acar, A. E.; Yagci, M. B.; Mathias, L. J. Macromolecules 2000, 33, 7700.

Google Scholar

[11] Chen, X.; Qiu, K. Macromolecules 1999, 32, 8711.

Google Scholar

[12] Qin, D.; Qin, S.; Qiu, K. J Polym Sci Part A: Polym Chem 2000, 38, 101.

Google Scholar

[13] Teodorescu, M.; Gaynor, S. G.; Matyjaszewski, K. Macromolecules 2000, 33, 2335.

Google Scholar

[14] Guido, K.; Paik, H. J.; Matyjaszeki, K. Macromolecules 1999, 32, 2941.

Google Scholar

[15] Shen, Y. S.; Zhu, S. P.; Zeng, F. Q.; Pelton, R. Macromolecules, 2000, 33, 5427.

Google Scholar

[16] Hong, S. C.; Lutz, J.; Inoue, Y.; Strissel, C.; Nuyken, O.; Matyjaszeki, K. Macromolecules 2003, 36, 1075.

Google Scholar

[17] Carmichael, A. J.; Haddleton, D. M.; Bon, S. A. F.; Seddon, K. R. Chem Commun 2000, 14, 1237–1238.

Google Scholar

[18] Sarbu, T.; Matyjaszewski, K. Macromol Chem Phys 2001, 202, 3379–3391.

Google Scholar

[19] Biedron, T.; Kubisa, P. J Polym Sci Part A: Polym Chem 2002, 40, 2799–2809.

Google Scholar

[20] Biedron, T.; Kubisa, P. J Polym Sci Part A: Polym Chem 2005, 43, 3454–3459.

Google Scholar

[21] Maria, S.; Biedron, T.; Poli, R.; Kubisa, P. J Appl Polym Sci 2007, 105, 278–281.

Google Scholar

[22] Ryan, J.; Aldabbagh, F.; Zetterlund, P. B.;Yamada, B. Macromol Rapid Commun 2004, 25, 930–934.

DOI: 10.1002/marc.200400006

Google Scholar