MD Simulation of Chip Formation in Nanometric Cutting of Metallic Glass

Article Preview

Abstract:

Great prospect in ultra precision leads to the urgent requirement for the research on the nanometric machining of metallic glass (MG). Molecular dynamics simulation is carried out to find out the nanometric cutting mechanisms of MG. The MG workpiece, Cu50Zr50, is prepared using fast cooling simulation in isothermal-isobaric ensemble. Interactions of Cu and Zr atoms are described by Finnis-Sinclair potential. Morse potential is adopted for the interaction between the carbon atom in the diamond tool and the metal atom in the workpiece. Simulation results show that, different from cutting crystal material, there is not visible shear zone ahead of the tool. That is to say the mechanism in nanometric cutting MG may be plastic cutting.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 476-478)

Pages:

434-437

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] http://en.wikipedia.org/wiki/Amorphous_metal, 2011-7-10.

Google Scholar

[2] A. Inoue, http://www.arcmg.imr.tohoku.ac.jp/en/topics/inoue.html, 2011-7-10.

Google Scholar

[3] L. Akashev, V. Sidorov. High Temp. 47 (2009), p.331.

Google Scholar

[4] M. Hatate, J.S. Garitaonandia, K. Suzuki, J. Appl. Phys. 103 (2008), p.909.

Google Scholar

[5] A. Inoue, N. Nishiyama, MRS Bull. 32 (2007), p.651.

Google Scholar

[6] http://en.wikipedia.org/wiki/Deformation_mechanism, 2011-7-10.

Google Scholar

[7] A.S. Christopher, A.C. Lund, Nat. Mater. 7 (2003), p.449.

Google Scholar

[8] K. Ueda, A. Suda, T. Sugita, J. Jpn. Soc. Eng. 53 (1987), p.1785.

Google Scholar

[9] Y.C. Liang, J.X. Chen, M.J. Chen, Y.L. Tang, Q.S. Bai, Comput. Mater. Sci. 43 (2008), p.1130.

Google Scholar

[10] P. Yu. J. Non-Cryst. Solids 351 (2005), p.5.

Google Scholar

[11] M.W. Finnis, J.E. Sinclair, Philo. Mag. A 50 (1984), p.45.

Google Scholar

[12] R.M.J. Cotterill, M. Doyama, Lattice Deffects and their Interactions, In: R. Hasiguti (Eds), Energier and Atomic Configuration of Line Defects and Plane Defects, Gordon and Breach Science Publisher(1967).

Google Scholar

[13] L. A. Girifalco, V. G. Weizer, Phys. Rev. 114 (1959), p.687.

Google Scholar

[14] H. Y. Wang, F. A. Zhao, N. X. Chen, G. Liu, J. Magn, Magn. Mater. 295 (2005), p.219.

Google Scholar

[15] D.J. Oh, R.A. Johnson, A Semi-Empirical Potential for Graphite, In: J. Tersoff, D. Vanderbilt, and V. Vitek (Eds), Atomic Scale Calculations in Materials Science, Materials Research Society, Pittsburgh(1989).

Google Scholar

[16] L.C. Zhang, H. Tanaka, Wear. 211 (1997), p.44.

Google Scholar

[17] Q. X. Pei, C. Lu, F. Z. Fang, H. Wu, Comput. Mater. Sci. 37 (2006), p.434.

Google Scholar