Crystallization Behavior of Mg60Ni23.6La16.4 Metallic Glass

Article Preview

Abstract:

Mg60Ni23.6La16.4 amorphous ribbon was prepared by melting-spinning method and the crystallization behavior was investigated by differential scanning calorimetry (DSC). The Mg60Ni23.6La16.4 crystallization process exhibits two stages of crystallization and shows an obviously kinetic nature. Isothermal DSC curves indicate that the crystallization is a nucleation-and-growth procedure. The activation energy analysis based on Kissinger Method shows that the growth process for the first crystallization procedure is more difficult than that for the second one. Calculation based on the Johnson-Mehl-Avrami (JMA) model shows that the primary crystallization starts from small crystalline grains with an increasing nucleation rate.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 476-478)

Pages:

85-88

Citation:

Online since:

February 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.Y. Lee, N.H. Goo, W.T. Jeong and K.S. Lee: J. Alloys Compd. Vol. 313(2000), pp.258-262

Google Scholar

[2] L. Sun, G.X. Wang, H.K. Liu, D.H. Bradhurst and S.X. Dou: Electrochem. Solid-State Lett. Vol. 3(2000), pp.121-124

Google Scholar

[3] M. Abdellaoui, S. Mokbli, F. Cuevas, M. Latroche, A. Percheron-Guégan and H. Zarrouk: J. Alloys Compd. Vol. 356-357(2003), pp.557-561

DOI: 10.1016/s0925-8388(03)00119-1

Google Scholar

[4] A. Inoue, M. Kohinata, A.P. Tsai and T. Masumoto: Mater. Trans. JIM Vol. 30(1989), pp.378-381

Google Scholar

[5] A. Inoue, K. Ohtera, M. Kohinata, A.P. Tsai and T. Masumoto: J. Non-Cryst. Vol. 117-118(1990), pp.712-715

DOI: 10.1016/0022-3093(90)90628-y

Google Scholar

[6] S. Gonzalez, I.A. Figueroa and I. Todd: J. Alloys Compd. Vol. 484(2009), pp.612-618

Google Scholar

[7] Y.L. Du, Y.H. Deng, F. Xu, G. Chen, G.L. Chen and Q.A. Zhang: Chin. Phys. Lett. Vol. 23(2006), pp.3320-3322

Google Scholar

[8] F. Xu, Y.L. Du, P. Gao, Z.D. Han and Chen G: Mater. Lett. Vol. 61(2007), pp.4875-4878

Google Scholar

[9] L. Liu, Z.F. Wu and L. Chen: Chin. Phys. Lett. Vol. 19(2002), p.1483

Google Scholar

[10] T. Spassov, P. Solsona, Suriñach S and Baró M D: J. Alloys Compd. Vol. 345(2002), pp.123-129

Google Scholar

[11] X. Ou, G.Q. Zhang, X. Xu, L.N. Wang, J.F. Liu and J.Z. Jiang: J. Alloys Compd. Vol. 441(2007), pp.181-184

Google Scholar

[12] F. Xu, Y.L. Du, P. Gao, Z. Han, G. Chen, S.Q. Wang and J.Z. Jiang: J. Alloys Compd. Vol. 441(2007), pp.76-80

Google Scholar

[13] Y.L. Du, W. Li, Y.H. Deng and F. Xu: J. Therm. Anal. Calorim. Vol. 99(2009), p.191

Google Scholar

[14] L. Liu, X.J. Zhao, C. Ma and T. Zhang: Intermetallics Vol. 17(2009), p.241

Google Scholar