Facile Synthesis of Hierarchical ZnS Microspheres and their Photocatalytic Properties

Article Preview

Abstract:

Hexagonal ZnS nanostructured spheres self-assembled from ZnS nanocrystals were successfully synthesized through a facile hydrothermal method using 1-butyl-3-methlyimidazole thiocyanate ([BMIM][SCN]) as both sulfur source and capping ligand. By combining the results of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), ultraviolet–visible (UV–vis) absorption spectra, a structural and morphological characterization of the products was performed. The photocatalytic activity of ZnS microspheres had been tested by degradation of Rhodamine B (RB) under UV light compared to commercial ZnS powders, which indicated that the as-syntherized ZnS spheres exhibited enhanced photocatalytic activity for degradation of RB.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 482-484)

Pages:

2555-2558

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.M. Liddell, C.J. Summers. Adv. Mater., Vol.15 (2003), p.1715.

Google Scholar

[2] S. Yanagida, K. Mizumoto, C.J. Pac. J. Am. Chem. Soc., Vol. 108 (1986), p.647.

Google Scholar

[3] J. Liu, B.Y. Geng, S.Z. Wang. Cryst. Growth Des., Vol. 9 (2009), p.4384.

Google Scholar

[4] J.S. Hu, L.L. Ren, Y.G. Guo, H.P. Liang, A.M. Cao, L.J. Wan, C.L. Bai. Angew. Chem., Int. Ed., Vol. 44 (2005), p.1269.

Google Scholar

[5] Q.R. Zhao, Y. Xie, Z.G. Zhang, X. Bai. Cryst. Growth Des., Vol. 7 (2007), p.153.

Google Scholar

[6] M.S. Niasari, M.R.L. Estarki, F. Davar. J. Alloys Compd., Vol. 475 (2009), p.782.

Google Scholar

[7] H. Wang, Z. Chen, Q. Cheng, L. Yuan. J. Alloys Compd., Vol. 478 (2009), p.872.

Google Scholar

[8] D.F. Moore, Y.D. Zhong, L. Wang. J. Am. Chem. Soc., Vol. 126 (2004), p.14372.

Google Scholar

[9] X.S. Fang, C.H. Ye, X.S. Peng, Y.H. Wang, Y.C. Wu, L.D. Zhang. J. Cryst. Growth, Vol. 263 (2004), p.263.

Google Scholar

[10] G.D. Yuan, W.J. Zhang, W.F. Zhang, X. Fan, I. Bello, C.S. Lee, S.T. Lee. Appl. Phys. Lett., Vol. 93 (2008), p.213102.

Google Scholar

[11] X.D. Wang, P.X. Gao, J. Li, Z.L. Wang. Adv. Mater., Vol. 14 (2002), p.1732.

Google Scholar

[12] D. Moore, C. Ronning, C. Ma, Z.L. Wang. Chem. Phys. Lett., Vol. 385 (2004), p.8.

Google Scholar

[13] H.Z. Zhang, B. Gilbert, F. Huang, J.F. Banfield. Nature, Vol. 424 (2003), p.1025.

Google Scholar

[14] Z. Qiao, G. Xie, J. Tao. J. Solid State Chem., Vol. 166 (2002), p.49.

Google Scholar

[15] S.D. Scott, H.L. Barnes. Geochim. Cosmochim. Acta, Vol. 36 (1972), p.1275.

Google Scholar

[16] T. Yamaguchi, K. Yamamoto, H. Ohtaki. Bull. Chem. Soc. Jpn., Vol. 58 (1985), p.3235.

Google Scholar