Adsorption of Cu 2+ Ions from Aqueous Solution by NaOH Activated ZSM-5 Zeolite

Article Preview

Abstract:

ZSM-5 zeolite was chemical activated by using NaOH solution to enhance the adsorption efficiency to Cu2+ in aqueous solution. The equilibrium isotherm of NaOH activated ZSM-5 zeolite showed that the Langmuir model gave a better fit to the experimental data. The maximum adsorption capacity of NaOH activated ZSM-5 zeolite was 40.49 mg/g. The adsorption capacity was increased nearly 3.3 times than unactivated zeolite by using 0.4M NaOH. The kinetics study showed that the pseudo-second-order kinetics model could be used to describe the adsorption process satisfactorily. The research also found that the coexisting of Pb2+ ion would greatly decrease the adsorption efficiency of activated zeolite from 99.35% decreased to 56.52%. Both ZSM-5 zeolite and NaOH activated ZSM-5 zeolite was characterized by SEM.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 482-484)

Pages:

2568-2572

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. McKay, Y. S. Ho, J.C.P. Ng, Sep. Purif. Methods Vol. 28 (1999), p.87.

Google Scholar

[2] R. P. Han, L. N. Zou, X. Zhao, Y. F. Xu, F. Xu, Y. L. Li, Y. Wang, Chem. Engin. J. Vol. 149 (2009), p.123.

Google Scholar

[3] Ö. Gök, A. Özcan, B. Erdem, A.S. Özcan, Colloids Surf. A Vol. 317 (2008), p.174.

Google Scholar

[4] S. S. Banerjee, D. H. Chen, J. Hazard. Mater. Vol. 147 (2007), p.792.

Google Scholar

[5] M. R. Panuccio, F. Crea, A. Sorgonà, G. Cacco, J. Environ. Manage. Vol. 88 (2008), p.890.

Google Scholar

[6] W. S. Wan Ngah, M. A. K. M. Hanafiah, Biochem. Eng. J. Vol. 39 (2008), p.521.

Google Scholar

[7] Y. H. Zhan, Z. L. Zhu, J. W. Lin, Y. L. Qiu, J.F. Zhao, J. Environ. Sci. Vol. 22 (2010), p.1327.

Google Scholar

[8] Y. Al-Degs, M. A. M. Khraisheh, Sep. Sci.Technol. Vol. 35 (2000), p.2299.

Google Scholar

[9] R. P. Yang, X. X. Li, L. Ding, W. Chen, G. X. Jin, D. M. Zhang, Chinese J. Heal. Lab. Tech. Vol. 17 (2007), p.2217.

Google Scholar

[10] S. Lagergren, K. Sven. Vetenskapsakad. Handl. Band Vol. 24 (1898), p.1.

Google Scholar

[11] Y. S. Ho, G. Mckay, Chem. Eng. J. Vol. 70(1998), p.115.

Google Scholar

[12] Y. S. Ho, J. C. Y. Ng, G. McKay, Sep. Purif. Meth. Vol. 29 (2000), p.189.

Google Scholar

[13] N. I. Chubar, V. F. Samanidou, V. S. Kouts, G. G. Gallios, V. A. Kanibolotsky, V. V. Strelko, I. Z. Zhuravlev, J. Colloid Interf. Sci. Vol. 291 (2005), p.67.

DOI: 10.1016/j.jcis.2005.04.086

Google Scholar

[14] C. Namasivayam, S. Sumithra, Ind. Eng. Chem. Res. Vol. 43(2004), p.7581.

Google Scholar

[15] L. Lv, J. He, M. Wei, D.G. Evans, Xue Duan. Water Res. Vol. 40 (2006), p.735.

Google Scholar

[16] R. P. Han, W. H. Zou, H. K. Li, Y. H. Li, J. Shi, J. Hazard. Mater. B Vol. 137(2006), p.934.

Google Scholar