Liquid-Liquid Two-Phase Flow Patterns and Mass Transfer Characteristics in a Circular Microchannel

Article Preview

Abstract:

In this paper, flow patterns and mass transfer characteristics of two immiscible fluids in a T-junction circular microchannel were investigated. Four flow patterns, i.e. slug flow, irregular flow, parallel flow and annular flow, were captured by a CCD method, which were resulted from the competition among interfacial tension, viscous force and inertia force. Besides, the overall volumetric mass transfer coefficients ka for the four flow patterns was determined experimentally. The values of ka are in the range of 0.006~0.545s−1 and mainly dependent on the superficial velocity and the flow pattern regime.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 482-484)

Pages:

89-94

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. P. C. Marques, P. Fernandes, J. M. S. Cabral, P. Znidarsic-Plazl and I. Plazl: Chemical Engineering Journal, vol. 160 (2010), pp.708-714.

DOI: 10.1016/j.cej.2010.03.056

Google Scholar

[2] L. Shui, J. C. T. Eijkel and A. van den Berg: Advances in Colloid and Interface Science, vol. 133 (2007), pp.35-49.

DOI: 10.1016/j.cis.2007.03.001

Google Scholar

[3] J. R. Burns and C. Ramshaw: Lab on a Chip, vol. 1 (2001), pp.10-15.

Google Scholar

[4] G. Dummann, U. Quittmann, L. Gröschel, D. W. Agar, O. Wörz and K. Morgenschweis: Catalysis Today, vol. 79-80 (2003), pp.433-439.

DOI: 10.1016/s0920-5861(03)00056-7

Google Scholar

[5] T. Honda, M. Miyazaki, Y. Yamaguchi, H. Nakamura and H. Maeda: Lab on a Chip, vol. 7 (2007), pp.366-372.

Google Scholar

[6] P. Znidarsic-Plazl and I. Plazl: Lab on a Chip, vol. 7 (2007), pp.883-889.

DOI: 10.1039/b704432a

Google Scholar

[7] Y. Zhao, G. Chen and Q. Yuan: AIChE Journal, vol. 52 (2006), pp.4052-4060.

Google Scholar

[8] J. D. Tice, A. D. Lyon and R. F. Ismagilov: Analytica Chimica Acta, vol. 507 (2004), pp.73-77.

Google Scholar

[9] M. N. Kashid, A. Renken and L. Kiwi-Minsker: Industrial & Engineering Chemistry Research, vol. 50 (2011), pp.6906-6914

DOI: 10.1021/ie102200j

Google Scholar

[10] Y. Zhao, G. Chen and Q. Yuan: AIChE Journal, vol. 53 (2007), pp.3042-3053.

Google Scholar

[11] Y. Su, Y. Zhao, G. Chen and Q. Yuan: Chemical Engineering Science, vol. 65 (2010), pp.3947-3956.

Google Scholar

[12] H.-B. Kim, K. Ueno, M. Chiba, O. Kogi and N. Kitamura: Analytical Sciences, vol. 16 (2000), pp.871-876.

Google Scholar

[13] J. Atencia and D. J. Beebe: Nature, vol. 437 (2005), pp.648-655.

Google Scholar

[14] M. Joanicot and A. Ajdari: Science, vol. 309 (2005), pp.887-888.

Google Scholar

[15] T. Funada and D. D. Joseph: Journal of Fluid Mechanics, vol. 445 (2001), pp.263-283.

Google Scholar

[16] M. N. Kashid, F. Platte, D. W. Agar and S. Turek: Journal of Computational and Applied Mathematics, vol. 203 (2007), pp.487-497.

DOI: 10.1016/j.cam.2006.04.010

Google Scholar