Preparation and Characterization of Nitrogen-Doped TiO2 Decorated with Different Metal Ion

Article Preview

Abstract:

In this paper, nanotubular TiO2 obtained by hydrothermal method was selected as precursor to prepare metal ion decorated TiO2-xNx via a facile and one-pot method. As-synthesized M/TiO2-xNx (M references to Pd, Fe, Ni, Li) photocatalysts were characterized by means of X-ray diffraction, diffuse reflectance spectrometry, fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The photocatalytic activities of different metal ion decorated TiO2-xNx samples were compared by monitoring the photocatalytic oxidation of propylene under both ultraviolet light (UV) and visible light (Vis) irradiation. It was found that Pd/TiO2-xNx sample possessed the highest photocatalytic activity under both UV and Vis irradiation. The better crystallinity, better visible light absorption, higher hydroxy concentration were contributed to the best photocatalytic performance of Pd/TiO2-xNx.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

368-372

Citation:

Online since:

March 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.G. Yu, L.F. Qi, M. Jaroniec, Journal of Physical Chemistry C 114 (2010) 13118-13125.

Google Scholar

[2] H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, K. Ikeue, M. Anpo, J. Photochem. Photobiol. A: Chem. 148 (2002) 257-261.

Google Scholar

[3] F. Li, X. Li, M. Hou, K. Cheah, W. Choy, Applied Catalysis A: General 285 (2005) 181-189.

Google Scholar

[4] S. Kim, S.J. Hwang, W.Y. Choi, J. Phys. Chem. B 109 (2005) 24260-24267.

Google Scholar

[5] J. Chen, M. Yao, X. Wang, J. Nanopart. Res. 10 (2008) 163-171.

Google Scholar

[6] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269.

Google Scholar

[7] S.U.M. Khan, M. Al-Shahry, W.B. Ingler, Science 297 (2002) 2243.

Google Scholar

[8] Y. Wang, C. Feng, M. Zhang, J. Yang, Z. Zhang, Applied Catalysis B: Environmental 100 (2010) 84-90.

Google Scholar

[9] Y. Wang, C. Feng, Z. Jin, J. Zhang, J. Yang, S. Zhang, Journal of Molecular Catalysis A: Chemical 260 (2006) 1-3.

Google Scholar

[10] W. Zhu, X. Qiu, V. Iancu, X. -Q. Chen, H. Pan, W. Wang, N. Dimitrijevic, T. Rajh, H. Meyer, M. Paranthaman, G. Stocks, H. Weitering, B. Gu, G. Eres, Z. Zhang, Phys. Rev. Lett. 103 (2009) 226401.

DOI: 10.1103/physrevlett.103.226401

Google Scholar

[11] D. Li, Z. Chen, Y. Chen, W. Li, H. Huang, Y. He, X. Fu, Environ. Sci. Technol 42 (2008) 2130¨C2135.

Google Scholar

[12] J. Liu, R. Han, Y. Zhao, H. Wang, W. Lu, T. Yu, Y. Zhang, The Journal of Physical Chemistry C 115 (2011) 4507-4515.

Google Scholar

[13] Y. Cong, J. Zhang, F. Chen, M. Anpo, D. He, Journal of Physical Chemistry C 111 (2007) 10618-10623.

Google Scholar

[14] S. Kim, S. -K. Lee, J. Photochem. Photobiol. A: Chem. 203 (2009) 145-150.

Google Scholar

[15] N. Hua, Z. Wu, Y. Du, Z. Zhigang, P. Yang, Acta Phys. -Chim. Sin., 21 (2005) 1081-1085.

Google Scholar

[16] J. Zhang, Y. Wu, M. Xing, S.A.K. Leghari, S. Sajjad, Energy & Environmental Science 3 (2010) 715.

Google Scholar

[17] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir 14 (1998) 3160-3163.

DOI: 10.1021/la9713816

Google Scholar

[18] M. Zhang, Z. Jin, J. Zhang, X. Guo, J. Yang, W. Li, X. Wang, Z. Zhang, Journal of Molecular Catalysis A: Chemical 217 (2004) 203-210.

Google Scholar

[19] J. Yu, H. Yu, B. Cheng, C. Trapalis, Journal of Molecular Catalysis A: Chemical 249 (2006) 135-142.

Google Scholar

[20] S. Zhang, W. Li, Z. Jin, J. Yang, J. Zhang, Z. Du, Z. Zhang, Journal of Solid State Chemistry 177 (2004) 1365-1371.

Google Scholar

[21] E. Serwicka, Colloids and surfaces 13 (1985) 287-293.

Google Scholar

[22] T. Ihara, M. Miyoshi, M. Ando, S. Sugihara, Y. Iriyama, Journal of materials science 36 (2001) 4201-4207.

DOI: 10.1023/a:1017929207882

Google Scholar