Synthesis of Cu2O/NiFe2O4 Magnetic Complex and its Application in Photocatalytic Degradation

Article Preview

Abstract:

In order to enhance the re-collecting ability of Cu2O, Cu2O/NiFe2O4 magnetic complex was synthesized in this paper. XRD patterns showed the prepared material was the complex of Cu2O and NiFe2O4. The saturation magnetization (Ms) of Cu2O/NiFe2O4 magnetic complex was 12.056emu/g. The Cu2O/NiFe2O4 magnetic complex was used for the decolorization of P-nitrophenol solution in a photocatalytic degradation reactor under the visible light irradiation. In this work, the Cu2O/NiFe2O4 magnetic complex is recycled for 3 times, and the decomposition rates are all above 60%. The XRD also showed that the Cu2O/NiFe2O4 complex was neither oxidized nor deoxidized in the photocatalytic degradation process. It can be concluded that the prepared Cu2O/NiFe2O4 complex can be recycled applied to photocatalytic degradation treatment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

356-361

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.H. Zhang, X. Xiao, J.M. Nan. Hydrothermal-hydrolysis synthesis and photocatalytic properties of nano-TiO2 with an adjustable crystalline structure. J. Hazard Mater, Vol. 176(2010), 617-622.

DOI: 10.1016/j.jhazmat.2009.11.074

Google Scholar

[2] J. R Xiao, T.Y. Peng, D.N. Ke, L. Zan, Z.H. Peng. Synthesis, characterization of CdS/rectorite nanocomposites and its photocatalytic activity. J. Phys Chem Minerals, Vol. 34(2007), 275–285.

DOI: 10.1007/s00269-007-0146-x

Google Scholar

[3] A.A. Aal, S.A. Mahmoud, A.K. Aboul-Gheit. Sol–Gel and Thermally Evaporated Nanostructured Thin ZnO Films for Photocatalytic Degradation of Trichlorophenol. Nanoscale Res Lett., Vol. 4(2009), 627–634.

DOI: 10.1007/s11671-009-9290-1

Google Scholar

[4] P. W. Baumeister. Optical Absorption of Cuprous Oxide. J. Physical Review., Vol. 121(1961), 359-362.

DOI: 10.1103/physrev.121.359

Google Scholar

[5] G. Nagasubramanian, A.S. Gioda, A.J. Bard. Photoelectrochemical behavior of p-type Cu2O in acetonitrile solutions. J. Electrochemical Society, Vol. 128(1981), 2158-2164.

DOI: 10.1149/1.2127208

Google Scholar

[6] Vale´rie Mancier, Anne-Lise Daltin, Didier Leclercq. Synthesis and characterization of copper oxide(I) nanoparticles produced by pulsed sonoelectrochemistry. J. Ultrason. Sonochem, Vol. 15 (2008), 157-163.

DOI: 10.1016/j.ultsonch.2007.02.007

Google Scholar

[7] X.J. Zhang, G.F. Wang, H.B. Wu, D. Zhang, X.Q. Zhang, P. Li, H.Q. Wu. Synthesis and photocatalytic characterization of porous cuprous oxide octahedral. J. Mater. Lett., Vol. 62 (2008), 4363-4365.

DOI: 10.1016/j.matlet.2008.07.028

Google Scholar

[8] Jorge Ramírez-Ortiz, Tetsuya Ogura, Jorge Medina-Valtierra, Sofía E. Acosta-Ortiz, Pedro Bosch, J. Antonio de los Reyes, Victor H. Lara. A catalytic application of Cu2O and CuO films deposited over fiberglass. J. Appl. Surf. Sci., Vol. 174(2001).

DOI: 10.1016/s0169-4332(00)00822-9

Google Scholar

[9] H.M. Yang, J.O. Yang, A.D. Tang, Y. Xiao, X.W. Li, X.D. Dong, Y.M. Yu. Electrochemical synthesis and photocatalytic property of cuprous oxide nanoparticles. J. Mater. Res. Bull., Vol. 41 (2006), 1310–1318.

DOI: 10.1016/j.materresbull.2006.01.004

Google Scholar

[10] J.Y. Chen, P.J. Zhou, J.L. Li, Y. Wang. Studies on the photocatalytic performance of cuprous oxide/chitosan nanocomposites activated by visible light. J. Carbohydr. Polym., Vol. 72 (2008), 128–132.

DOI: 10.1016/j.carbpol.2007.07.036

Google Scholar

[11] Jun Zuo, Lijun Yan, Xiuqin Yang, Yue Cheng. Research on optimization of the photocatalytic degradation of P-nitrophenol liquid by using ultrafine cuprous oxide with Response Surface Methodology. Journal of University of Science and Technology Beijing, Vol. 32(2010).

Google Scholar

[12] Sandra Gomes de Moraes, Renato Sanches Freire, Nelson Durán. Degradation and toxicity reduction of textile effluent by combined photocatalytic and ozonation processes. J. Chemosphere, Vol. 40 (2000), 369-373.

DOI: 10.1016/s0045-6535(99)00239-8

Google Scholar

[13] Fernando J. Beltrán, Francisco J. Rivas, Ramón Montero-de-Espinosa. Catalytic ozonation of oxalic acid in an aqueous TiO2 slurry reactor. J. Applied Catalysis B: Environmental, Vol. 39 (2002), 221–231.

DOI: 10.1016/s0926-3373(02)00102-9

Google Scholar

[14] J. Fernández, J. Kiwi, J. Baeza, J. Freer, C. Lizama, H.D. Mansilla. Orange II photocatalysis on immobilised TiO2 Effect of the pH and H2O2. J. Applied Catalysis B: Environmental, Vol. 48 (2004), 205–211.

DOI: 10.1016/j.apcatb.2003.10.014

Google Scholar