[1]
J.H. Zhang, X. Xiao, J.M. Nan. Hydrothermal-hydrolysis synthesis and photocatalytic properties of nano-TiO2 with an adjustable crystalline structure. J. Hazard Mater, Vol. 176(2010), 617-622.
DOI: 10.1016/j.jhazmat.2009.11.074
Google Scholar
[2]
J. R Xiao, T.Y. Peng, D.N. Ke, L. Zan, Z.H. Peng. Synthesis, characterization of CdS/rectorite nanocomposites and its photocatalytic activity. J. Phys Chem Minerals, Vol. 34(2007), 275–285.
DOI: 10.1007/s00269-007-0146-x
Google Scholar
[3]
A.A. Aal, S.A. Mahmoud, A.K. Aboul-Gheit. Sol–Gel and Thermally Evaporated Nanostructured Thin ZnO Films for Photocatalytic Degradation of Trichlorophenol. Nanoscale Res Lett., Vol. 4(2009), 627–634.
DOI: 10.1007/s11671-009-9290-1
Google Scholar
[4]
P. W. Baumeister. Optical Absorption of Cuprous Oxide. J. Physical Review., Vol. 121(1961), 359-362.
DOI: 10.1103/physrev.121.359
Google Scholar
[5]
G. Nagasubramanian, A.S. Gioda, A.J. Bard. Photoelectrochemical behavior of p-type Cu2O in acetonitrile solutions. J. Electrochemical Society, Vol. 128(1981), 2158-2164.
DOI: 10.1149/1.2127208
Google Scholar
[6]
Vale´rie Mancier, Anne-Lise Daltin, Didier Leclercq. Synthesis and characterization of copper oxide(I) nanoparticles produced by pulsed sonoelectrochemistry. J. Ultrason. Sonochem, Vol. 15 (2008), 157-163.
DOI: 10.1016/j.ultsonch.2007.02.007
Google Scholar
[7]
X.J. Zhang, G.F. Wang, H.B. Wu, D. Zhang, X.Q. Zhang, P. Li, H.Q. Wu. Synthesis and photocatalytic characterization of porous cuprous oxide octahedral. J. Mater. Lett., Vol. 62 (2008), 4363-4365.
DOI: 10.1016/j.matlet.2008.07.028
Google Scholar
[8]
Jorge Ramírez-Ortiz, Tetsuya Ogura, Jorge Medina-Valtierra, Sofía E. Acosta-Ortiz, Pedro Bosch, J. Antonio de los Reyes, Victor H. Lara. A catalytic application of Cu2O and CuO films deposited over fiberglass. J. Appl. Surf. Sci., Vol. 174(2001).
DOI: 10.1016/s0169-4332(00)00822-9
Google Scholar
[9]
H.M. Yang, J.O. Yang, A.D. Tang, Y. Xiao, X.W. Li, X.D. Dong, Y.M. Yu. Electrochemical synthesis and photocatalytic property of cuprous oxide nanoparticles. J. Mater. Res. Bull., Vol. 41 (2006), 1310–1318.
DOI: 10.1016/j.materresbull.2006.01.004
Google Scholar
[10]
J.Y. Chen, P.J. Zhou, J.L. Li, Y. Wang. Studies on the photocatalytic performance of cuprous oxide/chitosan nanocomposites activated by visible light. J. Carbohydr. Polym., Vol. 72 (2008), 128–132.
DOI: 10.1016/j.carbpol.2007.07.036
Google Scholar
[11]
Jun Zuo, Lijun Yan, Xiuqin Yang, Yue Cheng. Research on optimization of the photocatalytic degradation of P-nitrophenol liquid by using ultrafine cuprous oxide with Response Surface Methodology. Journal of University of Science and Technology Beijing, Vol. 32(2010).
Google Scholar
[12]
Sandra Gomes de Moraes, Renato Sanches Freire, Nelson Durán. Degradation and toxicity reduction of textile effluent by combined photocatalytic and ozonation processes. J. Chemosphere, Vol. 40 (2000), 369-373.
DOI: 10.1016/s0045-6535(99)00239-8
Google Scholar
[13]
Fernando J. Beltrán, Francisco J. Rivas, Ramón Montero-de-Espinosa. Catalytic ozonation of oxalic acid in an aqueous TiO2 slurry reactor. J. Applied Catalysis B: Environmental, Vol. 39 (2002), 221–231.
DOI: 10.1016/s0926-3373(02)00102-9
Google Scholar
[14]
J. Fernández, J. Kiwi, J. Baeza, J. Freer, C. Lizama, H.D. Mansilla. Orange II photocatalysis on immobilised TiO2 Effect of the pH and H2O2. J. Applied Catalysis B: Environmental, Vol. 48 (2004), 205–211.
DOI: 10.1016/j.apcatb.2003.10.014
Google Scholar