Research on Electrochemical Properties of LiMnPO4 Synthesized by High Temperature Solid-Phase Method

Article Preview

Abstract:

LiMnPO4 cathode material for lithium ion batteries was synthesized by high temperature solid-phase method using MnCO3, Li2CO3, NH4H2PO4 as raw materials. The structure of samples was identified by XRD analysis and the particle surface morphology was examined by SEM. The results of XRD showed that the LiMnPO4 sample sintered at 700°C for 20h had single ordered olivine structure. The SEM pattern showed that spherical particles distributed uniformly. Respectively, it figured out that the initial charge and discharge capacities of the samples at 0.05C rate were 133.9 and 66.4mAh•g-1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

714-718

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough. J. Electrochem. Soc. 144 (1997) 1188.

Google Scholar

[2] Y.Q. Hu, M. M. Doeff, R. Kostecki, et al. J. Electrochem. Soc. 151(2004) 1279.

Google Scholar

[3] C.M. Julien, A.A. Salah, F. Gendron, J.F. Morhange, A. Mauger, C.V. Ramana., Scripta Mater. 55 (2006) 1179.

DOI: 10.1016/j.scriptamat.2006.07.011

Google Scholar

[4] N.N. Bramnik, K. Nikolowski, D.M. Trots, H. Ehrenberg. Electrochem. Solid-State. Lett. 1 (2008) 89.

DOI: 10.1149/1.2894902

Google Scholar

[5] M.E. Rabanal, M.C. Gutierrez, F. Garcia-Alvarado, E.C. Gonzalo, M.E. Arroyo-de Dompablo. J. Power Sources. 160 (2006) 523.

DOI: 10.1016/j.jpowsour.2005.12.071

Google Scholar

[6] J. Yang, J.J. Xu. J. Electrochem. Soc. 153 (2006) 716.

Google Scholar

[7] S.C. Chung, J.T. Bloking, Y.M. Chiang. Nature Materials. 1 (2002) 123.

Google Scholar

[8] B. Kang, G. Ceder. Nature. 458 (2009) 190.

Google Scholar

[9] M. Konarova, I. Taniguchi. Powder Technol. 191 (2009) 111.

Google Scholar

[10] M. Konarova, I. Taniguchi, J. Power Sources. 195 (2010) 3661.

Google Scholar

[11] T. Shiratsuchi, S. Okada, T. Doi, J. Jamaki. Electrochim. Acta. 54 (2009) 3145.

Google Scholar

[12] T.N.L. Doan, Z. Bakenov, I. Taniguchi. Adv. Powder Technol. 21 (2010) 187.

Google Scholar

[13] Y. Wang, Y. Chen, S. Cheng, L. He. J. Chemical Engineering. 28(2011) 964.

Google Scholar

[14] J. Xiao, W. Xu, D. Choi, J.G. Zhang. J. Electrochem. Soc. 157 (2010) 142.

Google Scholar

[15] S.M. Oh, S.W. Oh, S.T. Myung, S.M. Lee, Y.K. Sun. .J. Alloys and Compounds. 506 (2010) 372.

Google Scholar

[16] C. Delacourt, L. Laffont, R. Bouchet, C. Wurm, J. -B. Leriche, M. Morcrette, J. -M. Tarascon, C. Masquelier, J. Electrochem. Soc. 152 (2005) 913.

DOI: 10.1149/1.1884787

Google Scholar

[17] M. Yonemura, A. Yamada, Y. Takei, N. Sonoyama, R. Kanno, J. Electrochem. Soc. 151 (2004) 1352.

Google Scholar