Transport Properties of Chitosan/Peo Blend Based Proton Conducting Polymer Electrolyte

Article Preview

Abstract:

The polymer electrolytes were prepared using the solution cast technique. The polymer host consisted of chitosan and poly(ethylene oxide) (PEO). Ammonium nitrate (NH4NO3) was added to the blend solution to provide the charge carriers for ionic conduction. The sample containing 40 wt.% NH4NO3 exhibited a conductivity value of 5.83 × 10-4 S cm-1 at 373 K. Conductivity-temperature relationship for all samples obeyed Arrhenius rule and the activation energy of each samples were obtained. The sample containing 40 wt.% NH4NO3 showed the lowest activation energy at 0.29 eV. The conductivity variation for the prepared electrolyte system was explained using the Rice and Roth model. Sample with 40 wt. % NH4NO3 exhibited the highest number density and mobility of charge carriers with values of 1.39 × 1020 cm-3 and 4.60 × 10-6 cm2 V-1 s-1 respectively. The increase in conductivity was attributed to the increase in the number density and mobility of charge carriers.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 488-489)

Pages:

114-117

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.L. Acosta and E. Morales: Solid State Ionics Vol. 85 (1996), p.85.

Google Scholar

[2] C. Sandoval, C. Castro, L. Gargallo, D. Radic and J. Freire: Polymer Vol. 46 (2005), p.10437.

Google Scholar

[3] S. Rajendran and O. Mahendran: Ionics Vol. 7 (2001), p.463.

Google Scholar

[4] O. Inganaas: British Polym. J. Vol. 20 (1987), p.233.

Google Scholar

[5] D. -W. Kim, J. -K. Park, and H. -W. Rhee: Solid State Ionics Vol. 83 (1996) p.49.

Google Scholar

[6] M. Mucha: Reactive and Functional Polymers Vol. 38 (1998), p.19.

Google Scholar

[7] M.F.Z. Kadir, L.P. Teo, S.R. Majid and A.K. Arof: Mater. Res. Innov. Vol. 13 (2009), p.294.

Google Scholar

[8] M.F.Z. Kadir, S.R. Majid and A.K. Arof: Electrochim. Acta Vol. 55 (2010), p.1475.

Google Scholar

[9] M.F.Z. Kadir, Z. Aspanut, S.R. Majid and A.K. Arof: Spectrochim. Acta Vol. 78 (2011), p.1068.

Google Scholar

[10] A.K. Arof and M.F.Z. Kadir: Mater. Res. Innov. Vol. 15 (2011), p. S217.

Google Scholar

[11] N.E.A. Shuhaimi, N.A. Alias, S.R. Majid and A.K. Arof: Funct. Mater. Lett. Vol. 3 (2008), p.195.

Google Scholar

[12] S.A. Mohamad, M.H. Ali, Z.A. Ibrahim and A.K. Arof: Mater. Sci. Forum Vol. 517 (2006), p.287.

Google Scholar

[13] M.F.Z. Kadir, Z. Aspanut, R. Yahya and A.K. Arof: Mater. Res. Innov. Vol. 15 (2011), p. S164.

Google Scholar

[14] R.C. Agrawal and G.P. Pandey: J. Phys. D. Appl. Phys. 41 (2008), art no. 223001.

Google Scholar

[15] M.H. Buraidah and A.K. Arof: J. Non-Crystalline Solids Vol. 357 (2011), p.3261.

Google Scholar

[16] A.S.A. Khiar, R. Puteh and A.K. Arof: Physica B Vol. 373 (2006), p.23.

Google Scholar

[17] N. Srivastava, S.A. Hashmi, S. Chandra, in: B.V.R. Chowdari, S. Chandra, S. Singh and P.C. Srivastava (Eds. ), Solid State Ionics: Materials and Applications, World Scientific, India, 1992, 561.

DOI: 10.1142/9789814536899

Google Scholar

[18] S.A. Hashmi, A. Kumar, K.K. Maurya and S. Chandra: J. Physics D: Applied Physics Vol. 23 (1990), p.1307.

Google Scholar

[19] M.H. Buraidah, L.P. Teo, S.R. Majid, A.K. Arof: Physica B Vol. 404 (2009), p.1373.

Google Scholar

[20] S.R. Majid and A.K. Arof: Physica B Vol. 355 (2005), p.78.

Google Scholar

[21] M.J. Rice and W.L. Roth: J. Solid State Chem. Vol. 4 (1972), p.29.

Google Scholar

[22] K. Okuyama, K. Noguchi, M. Kanenari, T. Egawa, K. Osawa and K. Ogawa, Carbohydr. Polym: Vol. 41 (2000), p.237.

Google Scholar