Ab Initio Electronic Structure Studies of CuO Multiferroics

Article Preview

Abstract:

We have performed detailed structural, electronic and magnetic properties of high - TC multiferroic CuO using first principles density functional theory. The total energy results revealed that AFM is the most stable magnetic ground state of CuO. The DOS and electronic band structure calculations show that in the absence of on-site Coulomb interaction (U), AFM structure of CuO heads to a metallic state. However, upon incorporating U in the calculations, a band gap of 1.2 eV is recovered. Furthermore, the Born effective charges calculated on Cu does not show any anomalous character.This suggests that the polarization seen in CuO could be attributed to the spin induced AFM ordering effect.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 488-489)

Pages:

129-132

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Giovannetti, S. Kumar, A. Stroppa, J. van den Brink, S. Picozzi and J. Lorenzana: Phys. Rev. Lett. 106 (2010), 026401.

DOI: 10.1103/physrevlett.107.239702

Google Scholar

[2] P. Toledano, N. Leo, D. D. Khalyavin, L. C. Chapon, T. Hoffmann, D. Meier and M. Fiebig: Phys. Rev. Lett. 106 (2011), 257601.

Google Scholar

[3] T. Kimura, Y. Seiko, H. Nakamura, T. Siegrist and A.P. Ramirez: Nature Mater. 7 (2008), 291.

Google Scholar

[4] G. Jin, G. Guo and L. He: arxiv: 1007. 2274.

Google Scholar

[5] Information on http: /www. pcpm. ucl. ac. be/abinit.

Google Scholar

[6] S. Asbrink and L. -J. Norrby: Acta Crystallogr. Sec. B 26 (1970), 8.

Google Scholar

[7] J.P. Perdew, K. Burke and M. Ernzerhof: Phys. Rev. Lett. 77 (1996), 3865.

Google Scholar

[8] F. P. Koffyberg and F. A. Benko: J. Appl. Phys. 53 (1982), 1173.

Google Scholar

[9] J. Ghijsen, L.H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G.A. Sawatzky and M.T. Czyzyk: Phys. Rev. B38 (1988), 11322.

DOI: 10.1103/physrevb.38.11322

Google Scholar

[10] F. Marabelli, G.B. Parravicini and F. Salghetti-Driolli: Phys. Rev. B 52 (1995), 1422.

Google Scholar

[11] J. B. Forsyth, P.J. Brown and B.M. Wanklyn: J. Phys. C: Solid State Phys. 21 (1988), 2917.

Google Scholar

[12] B.X. Yang, J.M. Tranquada and G. Shirane: Phys. Rev. B 38 (1988), 174.

Google Scholar

[13] K. Rabe, Ch. H. Ahn and J. -M. Triscone (Eds), Physics of Ferroelectrics- A modern Perspective, Springer-Verlag, Berlin, Heidelberg (2007).

Google Scholar

[14] R.D. King-Smith and D. Vanderbilt: Phys. Rev. B 47 (1993), 1651.

Google Scholar

[15] I.E. Dzyaloshinskii: Sov. Phys. JETP 19 (1964), 960.

Google Scholar

[16] T. Moriya: Phys. Rev. 120 (1960), 91.

Google Scholar