Optimization of Anodic Layer and Fabrication of Organic Light Emitting Diode

Article Preview

Abstract:

Ga doped ZnO (GZO) films of different concentrations (1, 2 and 4 mol%) have been deposited on glass substrates by RF magnetron sputtering. The grown layers at room temperature have been subjected to structural, optical and electrical characterization. It has been found that 2 mol% Ga doped ZnO has best structural, optical and electrical properties which has been used as anode layer for the fabrication of Organic Light Emitting Diode (OLED). The Zn0.98Ga0.02O film was then deposited at a lower working pressure of 0.015 mbar to obtain a good carrier concentration. The OLED structure has been fabricated with best GZO as anode layer, [N, N*-Diphenyl N, N*-Di-p-Tolylbenzene-1] as hole emitting layer and (Alq3) as electron transport layer. The fabricated OLED device has been subjected to current-voltage characteristics.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 488-489)

Pages:

1348-1352

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.W. Tang and S.A. VanSlyke: Appl. Phys. Lett. Vol. 51 (1987), p.913.

Google Scholar

[2] J. Gao, A. J. Heeger, J.Y. Lee and C.Y. Kim: Synth. Met. Vol. 82 (1996), p.221.

Google Scholar

[3] Y. Cao, G. Yu, C. Zhang, R. Menon and A.J. Heeger: Synth. Met. Vol. 87 (1997), p.171.

Google Scholar

[4] T. Osada, Th. Kugler, P. Bröms and W.R. Salaneck: Synth. Met. 96 (1998), p.77.

Google Scholar

[5] B. Yaglioglu, Y. J. Huang, H.Y. Yeom and D.C. Paine: Thin Solid Films Vol. 496 (2006), p.89.

Google Scholar

[6] H. Kim, A. Piqué, J.S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi and D.B. a) Chrisey: Appl. Phys. Lett. Vol. 74 (1999), p.3444.

DOI: 10.1063/1.124122

Google Scholar

[7] H. Kim, C. M. Gilmore, A. Piqué, J.S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi and D.B. Chrisey: J. Appl. Phys. Vol. 86 (1999), p.6451.

Google Scholar

[8] A.R. Schlatmann, D. Wilms Floet, A. Hilberer, F. Garten, P.J. M Smulders, T.M. Klapwijk and G. Hadziioannou: Appl. Phys. Lett. Vol. 69 (1996), p.1764.

DOI: 10.1063/1.117478

Google Scholar

[9] V. Assunção, E. Fortunato, A. Marques, H. Águas, I. Ferreira, M. E. V Costac and R. Martins: Thin Solid Films Vol. 427(2003), p.401.

Google Scholar

[10] K. Ellmer: J. Phys. D: Appl. Phys. Vol. 34 (2001), p.3097.

Google Scholar

[11] H. L. X. L. Chen, B. H. Xu, J. M. Xue, Y. Zhao, C.C. Wei, J. Sun, Y. Wang, D. Zhang and X. H. Geng: Thin Solid Films Vol. 515 (2007), p.3753 A. K. Abduev, A. K. Akhmedov and A. S. Asvarov: Sol. Energy Mater. Sol. Cells Vol. 91 (2007), p.258.

DOI: 10.1016/j.tsf.2006.09.039

Google Scholar

[12] H. J. Ko, Y. F. Chen, S. K. Hong and H. Wenisch: T. Yao: Appl. Phys. Lett. Vol. 77 (2000), p.3761.

Google Scholar

[13] R. G. Gordon: MRS Bulletin Vol. 25 (2000), p.52.

Google Scholar

[14] E. Fortunato, V. Assunção, A. Gonçalves, A. Marques, H. Águas, L. Pereira, I. Ferreira, P. Vilarinho and R. Martins: Thin Solid Films Vol. 451-452 (2004), p.443.

DOI: 10.1016/j.tsf.2003.10.139

Google Scholar

[15] V. Assunção, E. Fortunato, A, Marques, A. Gonçalves, I. Ferreira, H. Águas and R. Martins: Thin Solid Films Vol. 442 (2003), p.102.

DOI: 10.1016/s0040-6090(03)00955-6

Google Scholar

[16] Z. X. Fu, C. X. Guo, B. X. Lin and G. H. Liao: Chin. Phys. Lett. Vol. 15 (1998), p.457.

Google Scholar

[17] Z. Y. Xue, D. H. Zhang, Q. P. Wang and J. H. Wang: Appl. Surf. Sci. Vol. 195 (2002), p.126.

Google Scholar