Electrical Resistivity Based Non-Destructive Testing Method for Determination of Soil’s Strength Properties

Article Preview

Abstract:

Precise determination of engineering properties of soil is essential for proper design and successful construction of any structure. The conventional methods for determination of engineering properties are invasive, costly and time-consuming. Electrical resistivity survey is an attractive tool for delineating subsurface properties without soil disturbance. Reliable correlations between electrical resistivity and other soil properties will enable us to characterize the subsurface soil without borehole sampling. This paper presents the preliminary results of an ongoing research on correlations of electrical resistivity with strength properties of soil. Soil investigations, field electrical resistivity survey (VES) and laboratory electrical resistivity measurements were conducted. From the data analysis, significant correlations have been obtained between resistivity and moisture content and angle of internal friction. Weaker correlations have been observed for cohesion and unit weight of soil.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 488-489)

Pages:

1553-1557

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Cosenza, E. Marmet, F. Rejiba, Y. Jun Cui, A. Tabbagh, and Y. Charlery: Correlations between geotechnical and electrical data: A case study at Garchy in France Journal of Applied Geophysics vol. 60 (2006), pp.165-178.

DOI: 10.1016/j.jappgeo.2006.02.003

Google Scholar

[2] A. Pozdnyakova and L. Pozdnyakova: Electrical fields and soil properties Proceedings of 17th World Congress of Soil Science, Thailand, 14-21 August vol. paper 1558 (2002).

Google Scholar

[3] A. Samouëlian, I. Cousin, A. Tabbagh, A. Bruand, and G. Richard: Electrical resistivity survey in soil science: a review Soil and Tillage Research vol. 83 (2005), pp.173-193.

DOI: 10.1016/j.still.2004.10.004

Google Scholar

[4] Z. S. Abu-Hassanein, C. H. Benson, and L. R. Blotz: Electrical resistivity of compacted clays Journal of Geotechnical Engineering - ASCE vol. 122 (1996), pp.397-406.

DOI: 10.1061/(asce)0733-9410(1996)122:5(397)

Google Scholar

[5] Y. Erzin, B. H. Rao, A. Patel, S. D. Gumaste, and D. N. Singh: Artificial neural network models for predicting electrical resistivity of soils from their thermal resistivity International Journal of Thermal Sciences vol. 49 (2010), pp.118-130.

DOI: 10.1016/j.ijthermalsci.2009.06.008

Google Scholar

[6] R. J. Kalinski and W. E. Kelly: Estimating water content of soils from electrical resistivity Geotechnical Testing Journal vol. 16 (1993), pp.323-329.

DOI: 10.1520/gtj10053j

Google Scholar

[7] R. J. Kalinski and W. E. Kelly: Electrical-resistivity measurements for evaluating compacted-soil liners Journal of Geotechnical Engineering - ASCE vol. 120 (1994), pp.451-457.

DOI: 10.1061/(asce)0733-9410(1994)120:2(451)

Google Scholar

[8] W. J. McCarter: Electrical Resistivity Characteristics of Compacted Clays Geotechnique vol. 34 (1984), pp.263-267.

DOI: 10.1680/geot.1984.34.2.263

Google Scholar

[9] F. Ozcep, O. Tezel, and M. Asci: Correlation between electrical resistivity and soil-water content: Istanbul and Golcuk International Journal of Physical Sciences vol. 4 (2009), pp.362-365.

Google Scholar

[10] F. Ozcep, E. Yildirim, O. Tezel, M. Asci, and S. Karabulut: Correlation between electrical resistivity and soil-water content based artificial intelligent techniques International Journal of Physical Sciences vol. 5 (2010), pp.47-56.

Google Scholar

[11] L. Pozdnyakova, A. Pozdnyakov, and R. Zhang: Application of geophysical methods to evaluate hydrology and soil properties in urban areas Urban Water vol. 3 (2001), pp.205-216.

DOI: 10.1016/s1462-0758(01)00042-5

Google Scholar

[12] B. F. Schwartz, M. E. Schreiber, and T. Yan: Quantifying field-scale soil moisture using electrical resistivity imaging Journal of Hydrology vol. 362 (2008), pp.234-246.

DOI: 10.1016/j.jhydrol.2008.08.027

Google Scholar

[13] Y. Son, M. Oh, and S. Lee: Estimation of soil weathering degree using electrical resistivity Environmental Earth Sciences vol. 59 (2009), pp.1319-1326.

DOI: 10.1007/s12665-009-0119-0

Google Scholar

[14] S. Sreedeep, A. C. Reshma, and D. N. Singh: Generalized relationship for determining soil electrical resistivity from its thermal resistivity Experimental Thermal and Fluid Science vol. 29 (2005), pp.217-226.

DOI: 10.1016/j.expthermflusci.2004.04.001

Google Scholar

[15] G. L. Yoon and J. B. Park: Sensitivity of leachate and fine contents on electrical resistivity variations of sandy soils Journal of Hazardous Materials vol. 84 (2001), pp.147-161.

DOI: 10.1016/s0304-3894(01)00197-2

Google Scholar

[16] P. H. Giao, S. G. Chung, D. Y. Kim, and H. Tanaka: Electric imaging and laboratory resistivity testing for geotechnical investigation of Pusan clay deposits Journal of Applied Geophysics vol. 52 (2003), pp.157-175.

DOI: 10.1016/s0926-9851(03)00002-8

Google Scholar

[17] S. Oh and C. G. Sun: Combined analysis of electrical resistivity and geotechnical SPT blow counts for the safety assessment of fill dam Environmental Geology vol. 54 (2008), pp.31-42.

DOI: 10.1007/s00254-007-0790-y

Google Scholar

[18] K. Sudha, M. Israil, S. Mittal, and J. Rai: Soil characterization using electrical resistivity tomography and geotechnical investigations Journal of Applied Geophysics vol. 67 (2009), pp.74-79.

DOI: 10.1016/j.jappgeo.2008.09.012

Google Scholar