Low Temperature Synthesis of Pb(Zr0.52Ti0.48)O3 Ceramic Powders by Chelating Agent Assisted Sol-Gel Process

Article Preview

Abstract:

The Perovskite Pb(Zr0.52Ti0.48)O3 (PZT) ceramic powders were synthesized by sol-gel assisted process by using citric acid (CA), EDTA and Triethanolamine (TEA) as chelating agents. The phase evolution of the synthesized powders was investigated by powder X-ray diffraction (XRD) analysis. TEA assisted process yielded phase pure PZT powders at a relatively low temperature of 600 °C compared to CA and EDTA assisted process. Further, the phase purity of the powders were improved by sintering temperature of 800°C. Vibrational analysis of Metal-Oxygen bonding was carried out using Fourier transform infrared spectroscopic (FTIR) analysis. Showed a broad band in the spectrums between 500 cm-1 to 700 cm-1 attributed to the vibrations (Ti/Zr)O6 and Ti/Zr-O from PbZrTiO3. The morphology of the prepared powders was visualized using Scanning electron microscope. From the leakage current characteristics, EDTA assisted powder has higher leakage current densities compared to the CA and TEA assisted powders.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 488-489)

Pages:

310-314

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. K. Zak, W.H. Abd. Majid and M. Darroudi: J. opto. Elect. Adv. Mater Vol. 12 (2010), p.1714.

Google Scholar

[2] B. Jaffe, W.R. Cook and H. Jaffe in: Piezoelectric Ceramics, Academic Press Inc., New York, (1971).

Google Scholar

[3] A.T. Chien, J. Sachleben, J.H. Kim, J.S. Speck and F.F. Lange: J. Mater. Res Vol. 14 (1999) p.3303.

Google Scholar

[4] Y. Deng, L. Liu, Y. Cheng, C.W. Nan and S.J. Zhao: Mater. Lett Vol. 57 (2003) p.1675.

Google Scholar

[5] C. Liu, B. Zou, A.J. Rondinine and Z.J. Zhang: J. Am. Chem. Soc Vol. 123 (2001) p.4344.

Google Scholar

[6] Z. Brankovic, G. Brankovic and J.A. Varela: J. Eur. Cera. Soc Vol. 24 (2004) p. (1945).

Google Scholar

[7] C. Courtois, J. Crampon, P. Chammpagne, C. Cochrane, N. Texier and A. Leriche: Cera. Inter Vol. 32 (2006) p.767.

Google Scholar

[8] N. A. Pertsev, V.G. Kukhar, H. Kohlstedt and R. Waser: Phy. Review B Vol. 67 (2003) p.54107.

Google Scholar

[9] M. L. Calzada, R. Sirera, F. Carmona and B. Jimenez: J. Am. Ceram. Soc Vol. 78 (7) (1995) p.1802.

Google Scholar

[10] B.M. Melnick, J.D. Cuchiaro, L.D. Mcmillian and C.A. Paz de Araujo: Ferroelectrics Vol. 112 (1990) p.329.

Google Scholar

[11] Z.J. Xu, R.Q. Chu, G.R. Li, X. Shao and Q.R. Yin: Mater. SCi. Engg B Vol. 117 (2005) p.113.

Google Scholar

[12] P. Scherrer in: Gottinger Nachrichten (1918).

Google Scholar

[13] D. Liu, H. Zhang, W. Cai, X. Wu and L. Zhao: Mater. chem. Phy Vol. 51 (1997) p.186.

Google Scholar

[14] H. Brunckova, L. Medvecky, J. Briancin and K. Saksl: Cera. Inter Vol. 30 (2004) p.453.

Google Scholar

[15] A. K. Zak and W.H. Abd. Majid: Cera. Inter Vol. 36 (2010) p. (1905).

Google Scholar

[16] A. K. Zak and W.H. Abd. Majid: Cera. Inter Vol. 37 (2011), p.753.

Google Scholar

[17] I. Boerasu, L. PIntilie, M. Pereira, M.I. Vasilevskiy, and M.J.M. Gomes: J. Appl. Phys Vol. 93 (2003) p.4776.

Google Scholar

[18] S.M. Sze in: Physics of semiconductor Devices, 2nd ed. Wiley (1981), Chaps. 7 and 10.

Google Scholar