Effect of Wood Flour Content and Cooling Rate on Properties of Rubberwood Flour/Recycled Polypropylene Composites

Article Preview

Abstract:

The present article summarizes an experimental study on the mechanical and thermal behavior of recycled polypropylene composites reinforced with rubberwood flour. Different compositions were varied to investigate mechanical strengths, melting temperature, storage modulus, and loss modulus. It was observed that the tensile and flexural strengths decreased with the increase of wood flour content. Furthermore, the air cooled composites showed improved properties in comparison with the water cooled composites. The melting and crystallization temperature results presented a weak influence of increased wood flour content on composites. However, dynamic mechanical thermal analysis showed an increase in the storage and loss modulus.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 488-489)

Pages:

495-500

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Conroy, S. Halliwell and T. Reynolds: Composites: Part A Vol. 37 (2006), p.1216.

Google Scholar

[2] M. C. N. Yemele, A. Koubaa, A. Cloutier, and M. Wolcott: Composites: Part A Vol. 41 (2010), p.131.

Google Scholar

[3] J. A. Brydson: Plastics materials (7th ed. Butterworth-Heinemann, Oxford 1999).

Google Scholar

[4] D. Ndiaye, L. M. Matuana, L. Vidal, A. Tidjani and J. L. Gardette: J. Appl. Polym. Sci. Vol. 119 (2011), p.3321.

DOI: 10.1002/app.32985

Google Scholar

[5] J. Lisperguer, X. Bustos and Y. Saravia: J. Appl. Polym. Sci. Vol. 119 (2011), p.443.

Google Scholar

[6] K. B. Adhikary, S. Pang and M. P. Staiger: Composites: Part B Vol. 39 (2008), p.807.

Google Scholar

[7] T. Minowa, T. Kondo and S. T. Sudirjo: Biomass and Bioenergy Vol. 14 (1998), p.518.

Google Scholar

[8] J. Prachayawarakorn, K. Chaochanchaikul and N. Sombatsompop: J. Appl. Polym. Sci. Vol. 102 (2006), p.604.

Google Scholar

[9] N. Sombatsompop, K. Chaochanchaikul, C. Phromchirasuk and S. Thongsang: Polym. Int. Vol. 52 (2003), p.1851.

Google Scholar

[10] S. C. S. Teixeira, M. C. G. Rocha and F. M. B. Coutinho: J. Appl. Polym. Sci. Vol. 101 (2006), p.2564.

Google Scholar

[11] R. H. Elleithy, I. Ali, M. A. Ali and S. M. Al-Zahrani: J. Appl. Polym. Sci. Vol. 117 (2010), p.2416.

Google Scholar

[12] C. Xu, Y. Agari and M. Matsuo: Polym. J. Vol. 30 (1998), p.372.

Google Scholar

[13] W. Thongruang, C. M. Balik and R. J. Spontak: J. Polym. Sci. Part B: Polym. Phys. Vol. 40 (2002), p.1021.

Google Scholar

[14] H. Jiang and D. P. Kamdem: J. Appl. Polym. Sci. Vol. 107 (2008), p.954.

Google Scholar

[15] X. C. Ge, X. H. Li and Y. Z. Meng: J. Appl. Polym. Sci. Vol. 93 (2004), p.1810.

Google Scholar

[16] M. A. Syed, B. Ramaraj, S. Akhtar and A. A. Syed: J. Appl. Polym. Sci. Vol. 118 (2010), p.1206.

Google Scholar