Low Velocity Impact Resistance of Hybrid Woven Glass Fiber-Carbon Fiber/Vinyl Ester Composite Laminates

Article Preview

Abstract:

In recent years, for the purpose of achieving enhanced mechanical properties of fiber reinforced composites, hybridized composites containing a combination of two or more types of fiber reinforcements have been explored. Perhaps the main parameter which controls the mechanical properties of the hybrid composites is the flexibility to arrange the hybrid fiber reinforcement layers in a variety of ways within the hybrid laminate. In this study, low velocity drop weight impact resistance of plain weave woven glass and carbon hybrid composites has been investigated. The study explores the effects of intra-ply arrangement sequence on the impact resistance of 24 and 32 ply laminates in which glass and the carbon plies have been differently stacked. The results show that impact resistance of woven glass fiber composites can be enhanced by hybridizing woven glass fabrics with woven carbon fabrics. The results indicate that the impact resistance is a function of the positions of the glass and carbon layers in the hybridized inter ply laminates.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 488-489)

Pages:

501-505

Citation:

Online since:

March 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.W. Manders, M.G. Bader, J. of Materials Science Vol. 16 (8), (1981) , p.2233.

Google Scholar

[2] C. Atas, O. Sayman, Composite Structures, Vol. 82 (2008), p.336.

Google Scholar

[3] A. Pegoretti, E. Fabbri, C. Migliaresi and F. Pilati, Polymer Int, Vol. 53(2004), p.1290.

Google Scholar

[4] M. Sayer, N.B. Bektaş, H. Çallioǧlu, J. App. Polymer Sci. Vol. 118 (2010), p.580.

Google Scholar

[5] A. Askari, K. Nelson, O. Weckner, J. Xu, S. Silling, Aerospace Engg., Vol. 24 (2011), p.210.

Google Scholar

[6] T. Sugie, A. Nakai, H. Hamada, Composites Part A, Vol. 40, (2009), p. (1982).

Google Scholar

[7] Z. Wu, R. Ni, Advanced Materials Research, Vol. 332-334, (2011), p.1082.

Google Scholar

[8] A. Enfedaque, J.M. Molina-Aldareguía, F. Gálvez, C. González, J. Llorca, J. Composite Materials, Vol. 44 (2010), p.3051.

DOI: 10.1177/0021998310369602

Google Scholar

[9] M. M. Stevanovi, and T. B. Stecenko, Journal of Materials Science, 27, 2001, p.941.

Google Scholar

[10] S. Adanur, and L. Onal, Journal of Industrial Textiles, 31(2), (2001), p.123.

Google Scholar

[11] L. Onal and S. Adanur, Journal of Industrial Textiles, 31(4), (2002), p.255.

Google Scholar

[12] R. Park and J. Jang, Polymer Composites, Vol. 22 (2001), p.80.

Google Scholar

[13] N. Naik, R. Ramasimha, H. Arya, S. Prabhu, N. Shamarao, Comp. Part B, 32, (2001), p.565.

Google Scholar

[14] M.V. Hosur, M. Adbullah, S. Jeelani, Composite Structures, Vol. 67 (2005), p.253.

Google Scholar

[15] J. Silva Jr, S. Paciornik, J. d'Almeida, Polymer Testing, Vol. 23 (2004), p.599.

Google Scholar