Surface Modified CaCO3 Nanoparticles with Silica via Sol-Gel Process Using in Poly(lactic acid) Nanocomposite

Article Preview

Abstract:

The goal of this work is to modify surface of calcium carbonate nanoparticles with silica (CaCO3@SiO2) via sol-gel process, and to investigate the influence of CaCO3@SiO2 on mechanical properties and fracture behavior of poly(lactic acid) nanocomposite. Modified CaCO3@SiO2 nanoparticles were prepared with different Si/Ca ratios. It is found that the Si:Ca wt% ratio was increased with respect to the Si:Ca mole ratio used in the reaction. Incorporating CaCO3@SiO2 of 5 wt% increased elastic modulus, %elongation at break and notched impact strength of PLA nanocomposites, which these properties of CaCO3@SiO2-PLA nanocomposite was increased with respect to increasing of SiO2 content on the surface of CaCO3 nano-particles. This implies that better compatibility between polymer matrix and filler was achieved after modification surface of CaCO3 with SiO2 layers.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 488-489)

Pages:

520-524

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. -T. Lim, R. Auras and M. Rubino: Prog. Polym. Sci. Vol. 33 (2008), p.820.

Google Scholar

[2] F.P.L. Mantia and M. Morreale: Composites Part A Vol. 42 (2011), p.579.

Google Scholar

[3] D. Garlotta: J. Polym. Environ. Vol. 9 (2001), p.63.

Google Scholar

[4] T.D. Lam, T.V. Hoang, D.T. Quang and J.S. Kim: Mater. Sci. Eng., A Vol. 51 (2009), p.87.

Google Scholar

[5] S.S. Ray and M. Bousmina: Prog. Mater. Sci. Vol. 50 (2005), p.962.

Google Scholar

[6] B. -K. Chen, C. -H. Shen, S. -C. Chen and A. F. Chen: Polymer Vol. 51 (2010), p.4667.

Google Scholar

[7] V. Siracusa , P. Rocculi, S. Romani and M.D. Rosa: Trends in Food Science & Technology Vol. 19 (2008), p.634.

DOI: 10.1016/j.tifs.2008.07.003

Google Scholar

[8] M. -A. Paul, M. Alexandre, P. Degée, C. Henrist, A. Rulmont and P. Dubois: Polymer Vol. 44 (2003), p.443.

DOI: 10.1016/s0032-3861(02)00778-4

Google Scholar

[9] R. Dangtungee and P. Supaphol: Polymer Testing Vol. 27 (2008), p.951.

Google Scholar

[10] A. Sorrentino, G. Gorrasi and V. Vittoria: Trends in Food Science & Technology Vol. 18 (2007), p.84.

Google Scholar

[11] I. Pluta, M. Murariu, M. Alexandre, A. Galeski and P. Dubois: Polym. Degrad. Stab. Vol. 93 (2008), p.925.

Google Scholar

[12] C. Thellen, C. Orroth, D. Froio, D. Ziegler, J. Lucciarini, R. Farrell, N.A. D'Souza and J.A. Ratto: Polymer Vol. 46 (2005), p.11716.

DOI: 10.1016/j.polymer.2005.09.057

Google Scholar

[13] S. Zhang, X. Li: Powder Technology Vol. 141 (2004), p.75.

Google Scholar

[14] S. Miao: Appl. Surf. Sci. Vol. 220 (2003), p.298.

Google Scholar

[15] K. Gorna, M. Hund, M. Vučak, F. Gröhn and G. Wegner: Mater. Sci. Eng., A Vol. 477 (2008), p.217.

Google Scholar

[16] J. Chen, R. Liu, Y. Jimmy, Z. Shen, H. Zou and F. Guo, U.S. Patent No. 0170178 (2005).

Google Scholar

[17] K. Tanabe and K. Mitsuhashi, U.S. Patent No. 7060127 (2006).

Google Scholar

[18] S. Yan, J. Yin, J. Yang and X. Chen: Mater. Lett. Vol. 61 (2007), p.2683.

Google Scholar

[19] Z. Bartczak, A.S. Argon, R.E. Cohen and M. Weinberg: Polymer Vol. 40 (1999), p.2347.

Google Scholar