Effects of Calcination Temperature on Electrospun Silica Fibers

Article Preview

Abstract:

Silica fibers have been fabricated via sol-gel reaction and electrospinning. The precursor solution was prepared from tetraethyl-orthosilicate (TEOS), ethanol and aqueous hydrochloric acid. The viscous solution was electrospun at 15kV applied voltage and 20 cm tip-to-collector distance. The process yielded nonwoven sheet of silica fibers with good mechanical integrity. The silica fiber specimens were calcined at different temperatures: 400°C, 600°C and 800°C. Scanning electron microscope (SEM) observation reveals smooth and long fibers with average diameter below 0.5μm for all samples, both as spun and calcined. Fourier transform infrared spectroscopy (FT-IR) spectra show effects of calcination temperature on chemical structure of the fibers. Calcination results in the removal of organic residuals and leaving mostly silica content

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 488-489)

Pages:

602-606

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Huang, Z., Zhang, Y.Z., Kotaki, M. and Ramakrishna, S: Compos. Sci. Technol. 2003, 63(15), pp.2223-2253.

Google Scholar

[2] Rutledge, G.C. and Fridrikh, S. V: Adv. Drug Delivery Rev. 2007, 59(14), pp.1384-1391.

Google Scholar

[3] R. Furlan, E.W. Simoes, M.L.P. da Silva, I. Ramos, E. Fachini: Polymer 48 (2007) pp.5107-5115.

Google Scholar

[4] J. Kim, G. Cheruvally, X. Li, J. Ahn, K. Kim, H. Ahn: J. Power Sources 178 (2008) p.815–820.

DOI: 10.1016/j.jpowsour.2007.08.063

Google Scholar

[5] L. Ji and X. Zhang: Mater. Lett. 62 (2008) p.2161 –2164.

Google Scholar

[6] Yiyang Zhao, Haiying Wang, Xiaofeng Lu, Xiang Li, Yang Yang, Ce Wang: Mater. Lett. 62 (2008) p.143 –146.

Google Scholar

[7] C. Shao, H. Kim, J. Gong, B. Ding, D. Lee, S. Park: Mater. Lett. 57 (2003) p.1579– 1584.

Google Scholar

[8] X.H. Li, C.L. Shao, Y.C. Liu, X.T. Zhang, S.K. Hark: Mater. Lett. 62 (2008) p.2088 – (2091).

Google Scholar

[9] S. Choi, S.G. Lee, S.S. Im, S.H. Kim, Y.L. Joo: J. Mater. Sci. Lett. 22, 2003, p.891– 893.

Google Scholar

[10] K. Iimura, T. Oi, M. Suzuki, M. Hirota: Adv. Powder Technol. 21 (2010) p.64–68.

Google Scholar

[11] G. Zhang, W. Kataphinan, R. Teye-Mensah, P. Katta, L. Khatri, E.A. Evans G.G. Chase, R.D. Ramsier, D.H. Reneker: Mater. Sci. Eng., B 116 (2005) p.353–358.

DOI: 10.1016/j.mseb.2004.05.050

Google Scholar

[12] S.W. Lee, Y.U. Kim, S. Choi, Tae Y. Park Y.L. Joo, S.G. Lee: Mater. Lett. 61 (2007) p.889– 893.

Google Scholar

[13] L. Dai, X.L. Chen, T. Xhou, B.Q. Hu: J. Phys.: Condens. Matter. 14 (2002) p.473.

Google Scholar

[14] M. Andrianainarivelo, R. Corriu, D. Leclercq, P.H. Mutin, A. Vioux: J. Mater. Chem. 6 (10) (1996) p.1665.

Google Scholar