Effect of Silica Sources on Synthesis of Alumina-Mullite-Silicon Carbide Composite

Article Preview

Abstract:

Synthesis of alumina-mullite-silicon carbide composite (Al2O3-Al6Si2O13-SiCw) was obtained in situ by carbothermal reduction of a mixture of kaolin and two different silica sources. The carbothermal reduction was carried out in a horizontal tube furnace under flow of argon gas. The synthesized products were mixtures of alumina, mullite and silicon carbide in the form of whiskers. The effects of adding two different silica sources of rice husk ash and silica powder to the mixture of kaolin and activated carbon were investigated. XRD and SEM analyses indicate complete reaction of precursors to yield Al2O3-Al6Si2O13-SiC as product powders, with the SiC having whisker morphology.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 488-489)

Pages:

607-611

Citation:

Online since:

March 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Gao, X. Jin, H. Kawaoka, T. Sekino and K. Niihara: Mat. Sci. &Eng A, Vol. 334 (2002), p.262.

Google Scholar

[2] H. Jian-Feng, Z. Xie-Rong, L. He-Jun, X. Xin-Bo and H. Min: Carbon, Vol. 41 (2003), p.2825.

DOI: 10.1016/s0008-6223(03)00397-x

Google Scholar

[3] P. Chantikul, G.R. Anatis, B.R. Lawn and D.B. Marshall: J. Am. Ceram. Soc., Vol. 64(9) (1981), p.539.

Google Scholar

[4] M.F. Zawrah and M.H. Aly: Ceramics International, Vol. 32(1) (2006), p.21.

Google Scholar

[5] B.C. Bechtold and I.B. Cutler: J. Am. Ceram. Soc., Vol. 63 (1980), p.271.

Google Scholar

[6] A.C.D. Chaklader, S. Das Gupta, E.C.Y. Lin and B. Gutowski: J. Am. Ceram. Soc., Vol. 75 (1992), p.283.

Google Scholar

[7] S. Niyomwas and L. Sikong: EPD Congress 2005, ed. M.E. Schlesinger, The Minerals, Metals & Materials Society (TMS), Warrendale, PA, USA, (2005), p.801.

Google Scholar

[8] J. Dubois, M. Murat, A. Amroune, X. Carbonneau, R. Gardon and T.S. Kannan: Appl. Clay Sci., Vol. 13 (1998), p.1.

DOI: 10.1016/s0169-1317(98)00014-3

Google Scholar

[9] P.K. Panda, L. Mariappan and T.S. Kannan: Ceramics International, Vol. 25 (1999), p.467.

Google Scholar

[10] C.Y. Chen, G.S. Lan and W.H. Tuan: Ceramics International, Vol. 26 (2000), p.715.

Google Scholar

[11] E. Fagury-Neto and R.H.G.A. Kiminami: Ceramics International, Vol. 27 (2001), p.815.

Google Scholar

[12] C.Y. Chen and W.H. Tuan: Ceramics International, Vol. 27 (2001), p.795.

Google Scholar

[13] L. Mariappan, T.S. Kannan and A.M. Umarji: Mat. Chem & Phys., Vol. 75 (2002), p.284.

Google Scholar

[14] A. Nindemanis: Emergent Process Methods for High Technology Ceramics (New York, NY: Plenum Press, 1983).

Google Scholar

[15] C. Suryanarayana and M.G. Noeton: X-Ray Diffraction a Practical Approach (New York, NY: Plenum Press, 1998), 223.

Google Scholar