Effects of Carbon Nanotube on Tensile and Dynamic Mechanical Properties of NR/SBR and NR/XSBR Nanocomposites Prepared by Latex Compounding

Article Preview

Abstract:

In this study, natural rubber/styrene butadiene rubber (NR/SBR) and NR/carboxylated styrene butadiene rubber (NR/XSBR) nanocomposites with carbon nanotube (CNT) were prepared by a latex compounding method. The dry weight ratio of either NR/SBR or NR/XSBR was fixed to 80/20 and the CNT loading in each blend was varied from 0.1 to 0.4 phr. The nanocomposite latices were cast into sheets on a glass mold and then cured at 80°C for 3 h. The tensile properties (tensile strength, modulus at 300% strain, elongation at break) and dynamic mechanical properties (storage modulus, loss tangent) of the vulcanizates were then evaluated. The results showed that the addition of CNT at a very loading could enhance the tensile strength, modulus at 300% strain and storage modulus of these two rubber bends in a dose dependent manner, except that the tensile strength peaked at an optimum filler level, declining at higher filler loadings, whilst the elongation at break deteriorated. Moreover, the tensile strength and modulus at 300% strain of the NR/XSBR nanocomposites appeared to be higher than those of the NR/SBR nanocomposites at the same CNT loadings.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 488-489)

Pages:

612-616

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Manshaie, S.N. Khorasani, S.J. Veshare and M.R. Abadchi: Radiat. Phys. Chem. Vol. 80 (2011), p.100.

Google Scholar

[2] R. Stephen, S. Jose, K. Joseph, S. Thomas and Z. Oommen: Polym. Degrad. Stab. Vol. 91 (2006), p.1717.

Google Scholar

[3] M. De Sarkar, P.P. De and A.K. Bhowmick: Polymer. Vol. 41 (2000), p.907.

Google Scholar

[4] R. Stephen, K.V.S.N. Raju, S.V. Nair, S. Vaghese, Z. Oommen and S. Thomas: J. Appl. Polym. Sci. Vol. 88 (2003), p.2639.

Google Scholar

[5] S.C. George, K.N. Ninan and G. Groeninckx: J. Appl. Polym. Sci. Vol. 78 (2000), p.1280.

Google Scholar

[6] J.T. Varkey: Polym. Plast. Technol. Eng. Vol. 39 (2000), p.415.

Google Scholar

[7] R. Stephen, S. Thomas and K. Joseph: J. Appl. Polym. Sci. Vol. 98 (2005), p.1125.

Google Scholar

[8] Z. Gu, G. Song, W. Liu, P. Li, L. Gao, H. Li and X. Hu: Appl. Clay Sci. Vol. 46 (2009), p.241.

Google Scholar

[9] R. Stephen, R. Alex, T. Chrian, S. Varghese, K. Joseph and S. Thomas: J. Appl. Polym. Sci. Vol. 101 (2006), p.2355.

Google Scholar

[10] X. Zhou, Y. Zhu, J. Liang and S. Yu: J. Mater. Sci. Technol. Vol. 26 (2010), p.1127.

Google Scholar

[11] C. Nah, J.Y. Lim, R. Sengupta, B.H. Cho and A.N. Gent: Polym. Int. Vol. 60 (2010), p.42.

Google Scholar

[12] X.W. Zhou, Y.F. Zhu and J. Liang: Mater. Res. Bul. Vol. 42 (2007), p.456.

Google Scholar

[13] D. Yue, Y. Liu, Z. Shen and L. Zhang: J. Mater. Sci. Vol. 41 (2006), p.2541.

Google Scholar

[14] M.A. Atieh: J. Ther. Compos. Mater. Vol. 24 (2011), p.613.

Google Scholar