[1]
D .M. Rasetshwane, J. R. Boston and J. D. Durrant: Speech enhancement by combination of transient emphasis and noise cancelation, Digital Signal Processing Workshop and IEEE Signal Processing Education Workshop (2011), P. 116-121.
DOI: 10.1109/dsp-spe.2011.5739197
Google Scholar
[2]
R. T. Bambang, R. Yacoub and R. Hertanza : Recent progress in adaptive nonlinear active noise control, Electrical Engineering and Informatics, 2011 International Conference on, P. 17-19.
DOI: 10.1109/iceei.2011.6021848
Google Scholar
[3]
E. Bjarnason: Analysis of the filtered-X LMS algorithm, IEEE Transactions on speech and audio progressing, Vol. 3, No. 6 (1995), P. 504-513.
DOI: 10.1109/89.482218
Google Scholar
[4]
M. Ali, M. S. Issa, P. C. Panahi: A new delayless subband adaptive filtering algorithm for active noise control systems, IEEE Transactions on Audio, Speech, and Language Processing, Vol. 17, No. 5( 2009), P. 1038-1045.
DOI: 10.1109/tasl.2009.2015691
Google Scholar
[5]
Y. G. Xiao, J. Wang: A new feedforward hybrid active noise control system , IEEE Signal Processing Letters, Vol. 18, No. 10(2011),P. 591-594.
DOI: 10.1109/lsp.2011.2164067
Google Scholar
[6]
P. Strauch, B. Mulgrew: Active control of nonlinear noise processes in a linear duct, IEEE Trans., Signal Processing, Vol. 46, No. 9 (1998), P. 2404-2412.
DOI: 10.1109/78.709529
Google Scholar
[7]
L. Tan, and J. Jiang, Adaptive volterra Filters for active control of nonlinear noise processes, IEEE Trans. Signal Processing, Vol. 49, No. 8 (2001), P. 667-1676.
DOI: 10.1109/78.934136
Google Scholar
[8]
V. E. DeBrunner, D. Zhou: Active nonlinear noise control with certain nonlinearities in the secondary path. IEEE Signals, Systems and Computers, Vol. 2, (2003), P. 2053 – (2057).
DOI: 10.1109/acssc.2003.1292341
Google Scholar
[9]
L. Tan, Adaptive second-order volterra filtered-X RLS algorithms with sequential and partial updates for nonlinear active noise control. Industrial Electronics and Applications, 4th IEEE Conference on (2009), P. 1625-1630.
DOI: 10.1109/iciea.2009.5138470
Google Scholar
[10]
K. P. Seng, Z. H. Ma and H. R. Wu: Nonlinear active noise control using Lyapunov theory and RBF network, Neural Networks for Signal Processing X, 2000. Proceedings of the 2000 IEEE Signal Processing Society Workshop, Vol. 2, P. 916-925.
DOI: 10.1109/nnsp.2000.890172
Google Scholar
[11]
H. Q. Zhao, J. Zhang: Filtered-s Lyapunov algorithm for nonlinear active control of nonlinear noise processes, 9th International Conference on Signal Processing, (2008), P. 311-314.
DOI: 10.1109/icosp.2008.4697133
Google Scholar
[12]
H. Q. Zhao, J. Zhang: Filtered-X Lyapunov algorithm for nonlinear active noise control using second-order volterra filter, IEEE International Conference on Communication Technology Proceedings, Signal Processing (2008), P. 497-500.
DOI: 10.1109/icct.2008.4716090
Google Scholar
[13]
K. P. Seng, Z. H. Man, and H. R. Wu: Lyapunov theory-based radial basis function networks for adaptive filtering, IEEE Transactions on Circuits and Systems, Vol. 49, No. 8 (2002), P. 1215-1220.
DOI: 10.1109/tcsi.2002.801255
Google Scholar
[14]
Z. H. Man, H. R. Wu and S. Liu: A new adaptive back propagation algorithm based on Lyapunov stability theory for neural networks, IEEE Trans. Neural Networks, Vol. 17, No. 6 (2006), P. 1580-1591.
DOI: 10.1109/tnn.2006.880360
Google Scholar
[15]
S. M. Sen, D. R. Morgan: Active noise control for a tutorial review, Proceedings of IEEE, Vol. 87, No. 6 (1999), P. 943-973.
Google Scholar