Study of Performance of US-FE-LSPIM QUAD4 Element on Mesh Distortion

Article Preview

Abstract:

This US-FE-LSPIM QUAD4 element is formed by using two different sets of shape functions for the trial and test functions, viz. sets of FE-LSPIM QUAD4 element shape functions and sets of classical isoparametric shape functions. For some test problems, the US-FE-LSPIM QUAD4 element has good accuracy. And by compared with FE-LSPIM QUAD4 element, the proposed element does not need to use Penalty method or Lagrange multiplier method to ensure fulfilment of exact essential boundary condition along the entire length of the edge. This paper further studies the performance of US-FE-LSPIM QUAD4 element on mesh distortion. Numerical test examples show that the element exhibits high precisions even under the mesh distortions. The US-FE-LSPIM QUAD4 element displays good tolerance to the mesh distortions

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 490-495)

Pages:

3008-3012

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.L. Taylor and P. J Beresford: A non-conforming element for stress analysis. Int. J. Numer. Meth. Engng. Vol. 10 (1976) No. 6, pp.1211-1219.

DOI: 10.1002/nme.1620100602

Google Scholar

[2] T. Belytschko, Y. Y Lu and L. Gu: Element free Galerkin methods. Int. J. Numer. Meth. Engng. Vol. 37 (1994) No. 2, pp.229-256.

DOI: 10.1002/nme.1620370205

Google Scholar

[3] S. Rajendran and B.R. Zhang: A 'FE-Meshfree, QUAD4 element based on partition of unity. Comput. Meth. Appl. Mech. Engng. Vol. 197 (2007) No. 1-4, pp.128-147.

DOI: 10.1016/j.cma.2007.11.012

Google Scholar

[4] S. Rajendran and K. M . Liew: A novel unsymmetric 8-node plane element immune to mesh distortion under a quadratic displacement field. Int. J. Numer. Meth. Engng. Vol. 58 (2003) No. 11, pp.1713-1748.

DOI: 10.1002/nme.836

Google Scholar

[5] C. Jia and H.H. Chen: The 2nd International Conference on Engineering Computation (Beijin, China, Septemver 18-19, 2010). P. 85-88.

Google Scholar

[6] X. M. Chen and S. Cen: Membrane elements insensitive to distortion using the quadrilateral area coordinate method. Comput. Struct. Vol. 82 (2004) No. 1, pp.35-54.

DOI: 10.1016/j.compstruc.2003.08.004

Google Scholar