Effect of Growth Parameters on Single Crystal Diamond Deposition by DC Arc Plasma Jet CVD

Article Preview

Abstract:

Homoepitaxial diamond layers were grown on commercial 3.5 x 3.5 x 1.2 mm3 HPHT synthetic type Ib (100) single crystal diamond plates using a DC Arc Plasma Jet CVD operating at gas recycling mode. The effects of substrate temperature and CH4/H2 ratio on the surface morphology, the growth rate and the quality of the synthesized diamond have been studied using optical microscopy and Raman spectroscopy. With no intentional nitrogen added, the growth rate up to 12.3µm/h has been obtained in the single crystal diamond sample deposited at 1000 °C with CH4/H2=0.625%, exhibiting relatively smooth surface morphology without any growth hillocks nor non-epitaxial crystallites, and presenting the typical feature of the epitaxial step-flow growth. The full width at half maximum (FWHM) of the Raman spectra was 2.08 cm-1, which was close to that of the natural type IIa single crystal diamond.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 490-495)

Pages:

3094-3099

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Yan, Y.K. Vohra, H. Mao et al.: Proceedings of the National Academy of Sciences Vol. 99 (2002), p.12523.

Google Scholar

[2] Q. Liang, C.Y. Chin, J. Lai et al.: Applied physics letters Vol. 94 (2009), p.024103.

Google Scholar

[3] J. Isberg, J. Hammersberg, E. Johansson et al.: Science Vol. 297 (2002), p.1670.

Google Scholar

[4] M. Gabrysch: Electronic properties of diamond (Department of Engineering Sciences, Uppsala universitet, Uppsala 2008).

Google Scholar

[5] Q. Liang, C. Yan, Y. Meng et al.: Diamond and Related Materials Vol. 18 (2009), p.698.

Google Scholar

[6] S. Ho, C. Yan, Z. Liu et al.: Ind. Diamond Rev. Vol. 66 (2006), p.28.

Google Scholar

[7] J.E. Field: Properties of natural and synthetic diamond, edtied by J.E. Field, Academic Press, London (1992), p.474.

Google Scholar

[8] F. Silva, J. Achard, O. Brinza et al.: Diamond and Related Materials Vol. 18 (2009), p.683.

Google Scholar

[9] A. Muchnikov, A. Vikharev, A. Gorbachev et al.: Diamond and Related Materials Vol. 19 (2010), p.432.

Google Scholar

[10] G. Chen, B. Li, H. Li et al.: Diamond and Related Materials Vol. 19 (2010), p.1078.

Google Scholar

[11] G. Chen, B. Li, Z. Yan et al.: Diamond and Related Materials, In press.

Google Scholar

[12] F. Lu, W. Tang, G. Zhong et al.: Diamond and Related Materials Vol. 9 (2000), p.1655.

Google Scholar

[13] J. Achard, A. Tallaire, R. Sussmann et al.: Journal of crystal growth Vol. 284 (2005), p.396.

Google Scholar

[14] N. Lee, A. Badzian: Diamond and Related Materials Vol. 6 (1997), p.130.

Google Scholar

[15] W. Van Enckevort, G. Janssen, J. Schermer et al.: Diamond and Related Materials Vol. 4 (1995), p.250.

Google Scholar

[16] A. Chayahara, Y. Mokuno, Y. Horino et al.: Diamond and Related Materials Vol. 13 (2004), p. (1954).

Google Scholar

[17] W. Van Enckevort, A. Van der Berg, K. Kreuwel et al.: Journal of crystal growth Vol. 166 (1996), p.156.

Google Scholar

[18] W. Van Enckevort, A. Van Den Berg: Journal of crystal growth Vol. 183 (1998), p.441.

Google Scholar

[19] F. De Theije, J. Schermer, W. Van Enckevort: Diamond and Related Materials Vol. 9 (2000), p.1439.

Google Scholar

[20] T. Teraji, S. Mitani, T. Ito: physica status solidi (a) Vol. 198 (2003), p.395.

Google Scholar

[21] H. Guo, Z. Sun, Q. He et al.: Diamond and Related Materials Vol. 9 (2000), p.1673.

Google Scholar