Controllable Synthesis of CaMoO4 Microcrystals with Tailored Morphologies and Optical Properties

Article Preview

Abstract:

CaMoO4 microcrystals with controllable morphologies and luminescent properties were successfully synthesized via hydrothermal treatment. The as-prepared samples are characterized using X-ray powder diffraction, scanning electron microscopy; Fourier transformed infrared spectra. By adjusting the fundamental experimental parameters including reaction time, temperature and the amount of organic additives, CaMoO4 exhibited various morphologies, such as particles, dumbbells as well as flowers. Moreover, it is seen that CaMoO4 can be well crystallized with tetragonal structure at room temperature. The photoluminescence spectra of CaMoO4 display a strong and broad band emission with a maximum at 550 nm under excitation wavelength of 310 nm at room temperature. The luminescent intensity of CaMoO4 varied with the reaction time and temperature and was optimized at 200 oC, 45 h. The work provides a facile synthetic route for the construction of inorganic materials with controllable morphologies and luminescent properties

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 490-495)

Pages:

3145-3149

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.S. Porto, J.F. Scott, Phys. Rev. 157 (1967) 716.

Google Scholar

[2] Yong Sun , Junfeng Ma, Xiaohui Jiang, Jingrui Fang, Zuwei Song, Chang Gao, Zhensen Liu, Solid State Sciences. 12 (2010) 1283.

Google Scholar

[3] Geun-Kyu Choi, Seo-Yong Cho, Jae-Sul An, Kug Sun Hong,Journal of the European Ceramic Society. 26 (2006) (2011).

Google Scholar

[4] H. Meyssamy, K. Riwotzki, A. Kornowski, S. Naused and M. Haase, Adv. Mater. 11 (1999) 840.

DOI: 10.1002/(sici)1521-4095(199907)11:10<840::aid-adma840>3.0.co;2-2

Google Scholar

[5] V. F. Puntes, K. M. Krishnan and A. P. Alivisatos, Science. 291 (2001) 2115.

Google Scholar

[6] Z. A. Peng and X. G. Peng, J. Am. Chem. Soc. 123 (2001) 1389.

Google Scholar

[7] Yongkui Yin, Yan Gao, Yuzeng Sun, Baibin Zhou, Lin Ma, Xiang Wu, Xu Zhang, Materials Letters. 64 (2010) 602.

Google Scholar

[8] Grasser R, Pitt E, Scharmann A, Zimmerer G, Phys Status Solidi B. 69 (1975) 359.

Google Scholar

[9] Paski EF, Blades MW, Anal Chem. 60 (1988) 1224.

Google Scholar

[10] Yang P, Yao GQ, Lin JH, Inorg Chem Commun. 7 (2004) 389.

Google Scholar

[11] Sleight AW. Acta Crystallogr B, Struct Crystallogr Cryst Chem. 28 (1972) 2899.

Google Scholar

[12] Anukorn Phuruangrat, Titipun Thongtem, Somchai Thongtem, Journal of Alloys and Compounds. 481 (2009) 568.

DOI: 10.1016/j.jallcom.2009.03.037

Google Scholar

[13] A. Senyshyn, H. Kraus, V.B. Mikhailik, L. Vasylechko, M. Knapp, Phys. Rev. B. 73 (2006) 014104.

Google Scholar

[14] D. Errandonea, J. Pellicer-Porres, F.J. Manjón, A. Segura, Ch. Ferrer-Roca, R.S. Kumar, O. Tschauner, P. Rodríguez-Hernández, J. López-Solano, S. Radescu, A. Mujica, A. Mu˜noz, G. Aquilanti, Phys. Rev. B. 72 (2005) 174106.

DOI: 10.1016/j.jpcs.2006.05.011

Google Scholar

[15] D. Chen, G. Shen, K. Tang, H. Zheng, Y. Qian, Mater. Res. Bull. 38 (2003) 1783.

Google Scholar

[16] Di Chen, Kaibin Tang, Fanqing Li, Huagui Zheng, Crystal growth & design. 6 (2006) 247.

Google Scholar

[17] J. -W. Yoon et al. Materials Science and Engineering. B 127 (2006) 154.

Google Scholar

[18] G.Y. Hong, B.S. Jeon, Y.K. Yoo, J.S. Yoo, J. Electrochem. Soc. 148 (2001) H161.

Google Scholar

[19] J.H. Ryu, J.W. Yoon, C.S. Lim, W.C. Oh, K.B. Shim, J. Alloys Compd. 390 (2005) 245.

Google Scholar

[20] Y.G. Wang, J.F. Ma, J.T. Tao, X.Y. Zhu, J. Zhou, Z.Q. Zhao, L.J. Xie, H. Tian, Mater. Sci. Eng. B. 130 (2006) 277.

Google Scholar

[21] A.V. Veresnikova, B.K. Lubsandorzhiev, I.R. Barabanov, P. Grabmayr, D. Greiner, J. Jochum, M. Knapp, C. Oßwald, R.V. Poleshuk, F. Ritter, B.A.M. Shaibonov, Y.E. Vyatchin, G. Meierhofer, Nuclear Instruments and Methods in Physics Research. A 603 (2009).

DOI: 10.1016/j.nima.2009.02.041

Google Scholar

[22] Y. Zhang, N. A. W. Holzwarth, and R. T. Williams Pysical Review B. 57(20) (1998) 12738.

Google Scholar

[23] V. S. Marques, L. S. Cavalcante, J. C. Sczancoski, A. F. P. Alcantara, M. O. Orlandi, Crystal Growth & Design, 6 (2006) 14752.

Google Scholar

[24] Sillen, L. G.; Nylander, A. L. Ark. Kemi. Mineral. Geol. 17A (1943) 41.

Google Scholar

[25] Z.C. Ling, H.R. Xia, D.G. Ran, F.Q. Liu, S.Q. Sun, J.D. Fan, H.J. Zhang, J.Y. Wang, L.L. Yu, Chem. Phys. Lett. 426 (2006) 85.

Google Scholar

[26] A.P. de Azevedo Marques, D.M.A. de Melo, C.A. Paskocimas, P.S. Pizani, M.R. Joya, E.R. Leite, E. Longo, J. Solid State Chem. 179 (2006) 671.

DOI: 10.1016/j.jssc.2005.11.020

Google Scholar

[27] J.A. Gadsden, IR Spectra of Minerals and Related Inorganic Compounds, Butterworths, (1975).

Google Scholar

[28] Y.S. Luo, X.J. Dai, W.D. Zhang, Y. Yang, C. Q. Sun and S.Y. Fu, Dalton Trans., 39 (2010) 2226.

Google Scholar

[29] W.S. Wang, Y.X. Hu, J, Goebl, Z.D. Lu, L.Z. and Yadong Yin J. Phys. Chem. C, 113 (2009) 16414.

Google Scholar