Evaluation of Glass-Forming Ability for Metallic Melts by Phase Field Approach

Article Preview

Abstract:

Evaluation of glass-forming ability (GFA) is important in the development of amorphous alloys. Based on phase field theory, the kinetic model of liquid-to-solid phase transition is build, and the time-temperature-transformation (TTT) diagram is plotted according to the phase field simulations of isothermal phase transformation kinetics for a model system. Furthermore, the critical cooling rate for glass formation is calculated on the basis of the TTT curve and is taken as the intrinsic criteria of reflecting the GFA for metallic melts.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 490-495)

Pages:

3129-3133

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.K. Miller and P.K. Liaw: Bulk Metallic Glasses: An Overview, Springer, New York (2007).

Google Scholar

[2] A. Inoue: Acta Mater., Vol. 48 (2000), p.279.

Google Scholar

[3] D. Turnbull: Contemp. Phys., Vol. 10 (1969), p.473.

Google Scholar

[4] A. Inoue, T. Zhang and T. Masumoto: J. Non-Cryst. Solids, Vol. 156-158 (1993), p.473.

Google Scholar

[5] Z.P. Lu and C.T. Liu: Acta Mater., Vol. 50 (2002), p.3501.

Google Scholar

[6] Q.J. Chen, J. Shen, D.L. Zhang, H.B. Fan, J. Sun and D.G. McCartney: Mater. Sci. Eng. A, Vol. 433 (2006), p.155.

Google Scholar

[7] X.H. Du, J.C. Huang, C.T. Liu and Z.P. Lu: J. Appl. Phys., Vol. 101 (2007), 086108.

Google Scholar

[8] G.J. Fan, H. Choo and P.K. Liaw: J. Non-Cryst. Solids, Vol. 353 (2007), p.102.

Google Scholar

[9] Z.Z. Yuan, S.L. Bao, Y. Lu, D.P. Zhang and L. Yao: J. Alloy. Compd., Vol. 459 (2008), p.251.

Google Scholar

[10] G.H. Zhang and K.C. Chou: J. Appl. Phys., Vol. 106 (2009), 094902.

Google Scholar

[11] S. Guo and C.T. Liu: Intermetallics, Vol. 18 (2010), p. (2065).

Google Scholar

[12] W.H. Wang, C. Dong and C.H. Shek: Mater. Sci. Eng. R, Vol. 44 (2004), p.45.

Google Scholar

[13] B.X. Liu, W.S. Lai and Q. Zhang: Mater. Sci. Eng. R, Vol. 29 (2000), p.1.

Google Scholar

[14] G.L. Chen, X.D. Hui, S.W. Fan, H.C. Kou and K.F. Yao: Intermetallics, Vol. 10 (2002), p.1221.

Google Scholar

[15] T. Tokunaga, H. Ohtani and M. Hasebe: Calphad, Vol. 28 (2004), p.354.

Google Scholar

[16] L. Xia, S.S. Fang, Q. Wang, Y.D. Dong and C.T. Liu: Appl. Phys. Lett., Vol. 88 (2006), 171905.

Google Scholar

[17] L. Ge, X. Hui, E.R. Wang, G.L. Chen, R. Arroyave and Z.K. Liu: Intermetallics, Vol. 16 (2008), p.27.

Google Scholar

[18] C.Y. Tang, Y. Du, J. Wang, H.Y. Zhou, L.J. Zhang, F. Zheng, J. Lee and Q.R. Yao: Intermetallics, Vol. 18 (2010), p.900.

Google Scholar

[19] S. Mukherjee, J. Schroers, W.L. Johnson and W. -K. Rhim: Phys. Rev. Lett., Vol. 94 (2005), 245501.

Google Scholar

[20] L.Q. Chen: Annu. Rev. Mater. Res., Vol. 32 (2002), p.113.

Google Scholar

[21] D.J. Srolovitz, L.Q. Chen: in Handbook of Materials Modeling, edited by S. Yip, Springer (2005).

Google Scholar

[22] S.M. Allen and J.W. Cahn: Acta Metall., Vol. 27 (1979), p.1085.

Google Scholar

[23] J.W. Christian: The Theory of Transformations in Metals and Alloys, Pergamon (2002).

Google Scholar

[24] J.P. Simmons, C. Shen and Y. Wang: Scripta Mater., Vol. 43 (2000), p.935.

Google Scholar