Preparation and Swelling Dynamics Characterization of Poly(N, N-Diethylacrylamide-Co-Itaconic Acid) Intelligent Hydrogels

Article Preview

Abstract:

Poly(N,N-diethylacrylamide) (PDEA) hydrogel is known for their intelligent reversible swelling/deswelling behavior in response to temperature changes across a lower critical solution temperature (LCST) at around 31oC. In this study, itaconic acid (IA) was co-polymerized with N, N-diethylacrylamide (DEA) monomer to improve the swelling behavior and the total absorbing water. These copolymer hydrogels were prepared by changing the initial DEA/IA molar ratio and total monomer concentration. The chemical structure of hydrogels was characterized by fourier transform infrared (FTIR) spectroscopy. In comparison with the PDEA hydrogel, the equilibrium swelling ratio (ESR) of the hydrogels increase with the increase of IA content in the feed and the swelling dynamics behaviors of the different composition ratios of the P(DEA-co-IA) hydrogels on the different temperatures was investigated in detail.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 490-495)

Pages:

3382-3386

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.V. Vinogradov, T.K. Bronch, and A.V. Kabanov: Adv. Drug Delivery Rev. Vol. 54 (2002), p.135.

Google Scholar

[2] G.U. Ostrovidova, A.V. Makeev, and M.M. Shamtsian: J. Mater. Sci. Eng. Vol. 23 (2003), p.45.

Google Scholar

[3] M.R. Razaak, D. Darwis, Zainuddin, and R. Sukimo: Radiat. Phys. Chem. Vol. 62 (2001), p.107.

Google Scholar

[4] T. Aoki, M. Kawashima, H. Katono, K. Sanui, T. Ogata, T. Okano, and Y. Sakurai: Macromolecules Vol. 27 (1994), p.947.

DOI: 10.1021/ma00082a010

Google Scholar

[5] H. Sasase, T. Aoki, H. Katono, K. Sanui, and T. Ogata: Macromol. Chem. Rapid Commun. Vol. 13 (1992), p.577.

DOI: 10.1002/marc.1992.030131208

Google Scholar

[6] T. Shibanuma, T. Aoki, K. Sanui, N. Ogata, A. Kikuchi, V. Sakurai, and T. Okano: Macromolecules Vol. 33 (2000), p.444.

Google Scholar

[7] J. Chen, M.Z. Liu, and S.L. Chen: Mater. Chem. Phys. Vol. 115 (2009), p.339.

Google Scholar

[8] I. Idziak, D. Avoce, D. Lessard, D. Gravel, and X.X. Zhu: Macromolecules Vol. 32 (1999), p.1260.

Google Scholar

[9] B. Yıldız, B. Işık, and M. Kış: Polymer Vol. 42 (2001), p.2521.

Google Scholar

[10] F.L. Buchholz, and N.A. Peppas, in: Superabsorbent Polymers Science and Technology, ACS Symposium Series, ACS, Washington, DC, Vol. 573 (1994), p.121.

DOI: 10.1021/bk-1994-0573

Google Scholar

[11] G. Odian, in: Principles of Polymerization, 2nd ed. Wiley-Interscience, New York, (1981).

Google Scholar

[12] X.D. Wang, W. Feng, H.Q. Li, and E. Ruckenstein: Polymer Vol. 43 (2002), p.37.

Google Scholar

[13] R. Yoshida, Y. Kaneko, K. Sakai, T. Okano, Y. Sakurai, Y.H. Bae, and S.W. Kim: J. Control. Rel. Vol. 32 (1994), p.97.

Google Scholar

[14] T. Alfrey, E.F. Gurnee, and W.G. Lloyd: J. Polym. Sci. Polym. Symp. Vol. 12 (1996), p.249.

Google Scholar