Preparation and Basic Characterizations of Alginate-Chitosan Hydrogel

Article Preview

Abstract:

The aim of this study is to prepare and characterize an alginate-chitosan hydrogel for wound dressing application. The influence of alginate concentrations (1%, 2%, 3% and 4% (w/v)) was investigated. This polyelectrolyte hydrogel is observed to be transparent and flexible. The SEM morphological structure of hydrogel is composed of a dense outer skin layer and a porous cross-section layer. The FTIR and DSC measurements indicated the protonated amino group of chitosan has reacted with the carbonyl group of alginate. Some other properties for the wound dressing application are also reported in other paper. Taken together these results point out that alginate-chitosan polyelectrolyte hydrogel can be considered for wound dressing applications.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 490-495)

Pages:

3396-3400

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Wasserman D, Criteria for burn severity. Epidemiology, prevention, organization of management, Pathol. Biol. 50(2) (2002) 63-73.

Google Scholar

[2] N Boucard, C Viton, D Agay, E Mari, et al, The use of physical hydrogels of chitosan for skin regeneration following third-degree burns, Biomaterial. 28( 2007) 3478-3488.

DOI: 10.1016/j.biomaterials.2007.04.021

Google Scholar

[3] S Ladet, L David, A Domard, Multi-membrane hydrogels, Nature 452 (2008) 76-80.

DOI: 10.1038/nature06619

Google Scholar

[4] Seda Tiğli R, Karakeçili A, Gümüşderelioğlu M, In vitro characterization of chitosan scaffolds: influence of composition and deacetylation degree, J. Mater. Sci. Mater. Med. 18 (2007) 1665-1674.

DOI: 10.1007/s10856-007-3066-x

Google Scholar

[5] SJ Seo, IY Kim, YJ Choi, T Akaike, CS Cho, Enhanced liver functions of hepatocytes cocultured with NIH 3T3 in the alginate/galactosylated chotisan scaffold, Biomaterial. 27 (2006) 1487-1495.

DOI: 10.1016/j.biomaterials.2005.09.018

Google Scholar

[6] YC Ho, FL Mi, HW Sung, PL Kuo, Heparin-functionalized chitosan-alginate scaffolds for controlled release of growth factor. Int. J. Pharm. 376 (2009) 69-75.

DOI: 10.1016/j.ijpharm.2009.04.048

Google Scholar

[7] TW Chung, J Yang, T Akaike, KY Cho, JW Nah, S Kim, CS Cho, Preparation of alginate/ galactosylated chitosan scaffold for hepatocyte attachment, Biomaterial. 23 (2002) 2827-2834.

DOI: 10.1016/s0142-9612(01)00399-4

Google Scholar

[8] Mann BK, Gobin AS, Tsai AT, Schmedlen RH, West JL, Smooth muscle growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering, Biomaterial. 22 (2001) 3045-3051.

DOI: 10.1016/s0142-9612(01)00051-5

Google Scholar

[9] Orienti I, Treré R, Zecchi V, Hydrogels formed by cross-linked polyvinylalcohol as colon-specific drug delivery systems, Drug. Dev. In. 57 (2001) 217-223.

DOI: 10.1081/ddc-100107253

Google Scholar

[10] Ariel W. Chan, Ronald J. Neufeld, Modeling the controllable pH-responsive swelling and pore size of networked alginate based biomaterials, Biomaterial. 30 (2009) 6119-6129.

DOI: 10.1016/j.biomaterials.2009.07.034

Google Scholar

[11] J. Berger, M. Reist, J. M. Mayer, O. Felt, N.A. Peppas, R. Gurny, Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications, Eur. J. Ph. B. 57 (2004) 19-34.

DOI: 10.1016/s0939-6411(03)00161-9

Google Scholar

[12] X. Li, H. Xie, J. Lin, W. Xie, X. Ma, Characterization and biodegradation of chitosan-alginate polyelectrolyte complexes, Polym. Degr. 94 (2009) 1-6.

DOI: 10.1016/j.polymdegradstab.2008.10.017

Google Scholar

[13] H Zimmermann, F Wählisch, C Baier, M Westhoff, et al, Physical and biological properties of barium cross-linked alginate membranes, Biomaterial. 28 (2007) 1327-1345.

DOI: 10.1016/j.biomaterials.2006.11.032

Google Scholar

[14] X. Z. Shu, K. J. Zhu, W. Song, Novel pH-sensitive citrate cross-linked chitosan film for drug controlled release, Int. J. Pharm. 212 (2001) 19-28.

DOI: 10.1016/s0378-5173(00)00582-2

Google Scholar

[15] H. Kim, H. Lee, J. Oh, B. Shin, et al, Polyelectrolyte complex composed of chitosan and sodium alginate for wound dressing application, J. Biomater. Sci. Polym. Ed. 10(5) (1999) 543-556.

DOI: 10.1163/156856299x00478

Google Scholar

[16] Sankalia MG, Mashru RC, Sankalia JM, Sutariya VB, Reversed chitosan-alginate polyelectrolyte complex for stability improvement of alpha-amylase: Optimization and physicochemical characterization, Eur. J. Ph. B. 65 (2007) 215-232.

DOI: 10.1016/j.ejpb.2006.07.014

Google Scholar

[17] J.H. Yu, Y.M. Du, H. Zheng, Blend films of chitosan-gelation, J. Wuhan Univ. 45 (1999) 440-444.

Google Scholar

[18] T. Mimmo, C. Marzadori, D. Montecchio, C. Gessa, Characterization of Ca-and Al-Pectate Gels by Thermal Analysis and FT-IR Spectroscopy, Carbohydr. Res. 340 (2005) 2510-2519.

DOI: 10.1016/j.carres.2005.08.011

Google Scholar

[19] Soares, J. P., Santos, J. E., Chierice, G. O., Cavalheiro, E. T. G., Thermal behavior of alginic acid and its sodium salt, Eclet. Quim. 29(2) ( 2004) 57-63.

DOI: 10.1590/s0100-46702004000200009

Google Scholar

[20] Zohuriaan and Shokrolahi, Thermal Studies on Natural and Modified Gums, Polym. Test. 23(5) (2004) 575-579.

DOI: 10.1016/j.polymertesting.2003.11.001

Google Scholar

[21] Sarmento, D Ferreira, F Veiga, A Ribeiro, Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies, Carbohy. Pol. 66(1) (2006) 1-7.

DOI: 10.1016/j.carbpol.2006.02.008

Google Scholar